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§1 Putnam - 2001

§1.1 A1 - Algebra

Consider a set S and a binary operation ∗. Assume (a ∗ b) ∗ a = b for all a, b ∈ S. Prove
that a ∗ (b ∗ a) = b for all a, b ∈ S.

Proof. Note that
b = ((b ∗ a) ∗ b) ∗ (b ∗ a) = a ∗ (b ∗ a).

§1.2 A2 - Combinatorics

You have coins C1, C2, . . . , Cn. For each k, Ck is biased so that when tossed, is has
probability 1/(2k + 1) of falling heads. If the n coins are tossed, what is the probability
that the number of heads is odd?

Proof. We claim the probability is P (n) =
n

2n+ 1
. We prove it by induction. We are

given that P (1) = 1
3 , which satisfies the claim. Suppose P (k) = k

2k+1 for k ≥ 1. In order
to find P (k + 1), we condition on the result of the first k coin tosses. Namely, suppose
the number of heads is even after k tosses. Then, the total number of heads is odd if we
flip a head on the k + 1-th toss. Similarly, if the number of heads is odd after k tosses,
then the total number of heads is odd if we flip a tail on the k + 1-th toss.

Putting this together gives

P (k + 1) = (1− P (k))pk+1 + P (k)(1− pk+1)

= P (k) (1− 2pk+1) + pk+1

= P (k)

(
1− 2

2k + 3

)
+

1

2k + 3

= P (k)
2k + 1

2k + 3
+

1

2k + 3

=
k

2k + 1

2k + 1

2k + 3
+

1

2k + 3

=
k + 1

2k + 3

which proves the result.

§1.2.1 Official Solution

There is another remarkable proof using generating functions.

Proof. Consider the polynomial f(x) =
∏n
k=1

(
x

2k+1 + 2k
2k+1

)
. The coefficient of xm gives

the probability of exactly m heads. The sum of the odd coefficients is given by f(1)−f(−1)
2 .

It is clear that f(1) = 1 and note that

f(−1) =

n∏
k=1

2k − 1

2k + 1
=

1

2n+ 1
.

The overall probability is n
2n+1 as desired.
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§1.3 A3 - Algebra

For each integer m, consider the polynomial

Pm(x) = x4 − (2m+ 4)x2 + (m− 2)2.

For what values of m is Pm(x) the product of two non-constant polynomials with
integer coefficients?

Proof. We claim that m is the square of an integer or twice the square of an integer. Set
y = x2. We look for square-integer solutions for y. From the quadratic formula,

y =
2m+ 4±

√
(2m+ 4)− 4(m− 2)2

2

= m+ 2±
√

(m+ 2)2 − (m− 2)2

= m+ 2±
√

4(2m)

= m+ 2± 2
√

2m

= (
√
m±

√
2)2.

Hence, x = ±
√
m±

√
2. Note that if m is neither the square of an integer nor twice

the square of an integer then the field Q(
√
m,
√

2) is of degree 4 and the Galois group
acts transitively on the roots {±

√
m±

√
2}. It follows that the polynomial is irreducible.

It is easy to verify that if m is a square or twice a square, then Pm(x) reduces into the
product of non-constant integer polynomials.

§1.4 A4 - Geometry

Triangle ABC has area 1. Points E,F,G lie on sides BC, CA, AB such that AE bisects
BF at point R, BF bisects CG at point S, and CG bisects AE at point T . Find the
area of the triangle RST .

Proof. We claim that [RST ] = 7−
√

5
4 . Let EC/BC = r, FA/CA = s, GB/AB = t.

Note that [ABE] = [AFE] since they share a base AE and BR = FR implies that
the share the same altitude length as well(drop altitudes from F and B and use the
congruent triangles).

Then, [ABE] = [ABE]/[ABC] = BE/BC = 1 − EC/BC = 1 − r. We also have
[ACE] = r. It follows that [FCE] = [ACE](FC/AC) = r(1− s).

Now,

1 = [ABC] = [ABE] + [AFE] + [EFC] = (1− r) + (1− r) + r(1− s) =⇒ r(1 + s) = 1.

Arguing similarly for the other sides, we have s(1 + t) = 1, and t(1 + r) = 1.
It follows that

r =
1

1 + s
=

1

1 + 1
1+t

=
1

1 + 1
1+ 1

r

.

Simplifying this, we find that r = 2+r
3+2r , which gives 3r + 2r2 = 2 + r, or equivalently,

r2 + r − 1 = 0. Plugging into the quadratic formula and taking the positive root gives

r =
−1 +

√
5

2
,

4
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and by repeating the argument, we have r = s = t = −1+
√

5
2 .

Now, note that [ATC] = [AEC]/2 = r/2, [ATG] = [ACG] − [ATC] = 1 − t − r/2.
Similarly, [BSC] = t/2 and [BRE] = 1− r − s/2, so it follows that [BRTG] = [ABE]−
[ATG]− [BRE] = r/2 + s/2 + t− 1.

[RST ] = [ABC]− [ACG]− [BSC]− [BRTG]

= 1− (1− t)− (t/2)− (r/2 + s/2 + t− 1)

= 1− r + s+ t

2

= 1−
3
√

5−1
2

2

=
7−
√

5

4
.

Proof. A brute-force calculation through vectors. Define A to be the origin and take
B,C to be basis vectors from A. We can set G = βB, F = (1− γ)C, E = αC + (1−α)C.
Furthermore, we set R = (1− ρ)E, S = σB + (1− σ)F , T = τC + (1− τ)G. To satisfy
the conditions of the problem, we must have that

2R = B + F, 2S = C +G, 2T = E.

After messy algebra, we obtain that

α =
1− β
2− β

, β =
1− γ
2− γ

, γ =
1− γ
2− γ

,

which has an obvious solution α = β = γ = 3−
√

5
2 .

It follows that

(R− T, S − T ) =
1

2

(
α 2α− 1

1− 2α 1− α

)
,

so we can evaluate

[RST ] =
[ABC]

4

∣∣∣∣ α 2α− 1
1− 2α 1− α

∣∣∣∣ =
α2

2
=

7− 3
√

5

4
.

§1.5 A5 - Number Theory

Show that there are unique positive integers a, n such that an+1 − (a+ 1)n = 2001.

Proof. We claim the unique pair of positive integers satisfying the claim is (a, n) = (13, 2).
It is easy to verify that this is indeed a solution.

Considering the equation in Z3, we see that a ≡ 1 (mod 3) - in the other cases, one of
the terms vanishes and the other term is non-vanishing, so the difference cannot vanish.

Considering the equation in Z4, we cannot have a ≡ 0 (mod 4), for the same reason
as above. If a ≡ 1 (mod 4), we must have that n > 1 in order for the equivalence to be
satisfied. If a ≡ 2, 3 (mod 4), we must have that n is even.

In the case with a ≡ 1 (mod 3) and a ≡ 1 (mod 4), we obtain a ≡ 1 (mod 12) and
n > 1. We see easily that a = 1 does not satisfy the equation for any n > 1. For a = 13,
we have a solution as above for n = 2. It is easy to see that no higher value of n also
satisfies the equation since the function f(x) = 13x+1 − 14x is monotonically increasing.
We can repeatedly apply similar arguments for the other cases to show that this is the
unique solution.

5
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§1.6 A6 - Calculus

Can an arc of a parabola inside a circle of radius 1 have a length greater than 4?

Proof. We claim that it is possible. Take a unit circle given by x2 + (y − 1)2 = 1 and a
parabola y = kx2. The length of the curve inside the arc is given by

L(k) = 2

∫ √2k−1/k

0

√
1 + 4k2x2 dx =

1

4k

∫ 2
√

2k−1

0

√
1 + x2 dx.

It is easy to show that
√

1 + x2 ≥ 1
x+1 so it follows that limk→∞ L(k) = +∞. It follows

that there exists some k so that L(k) > 4 as desired.

§1.7 B1 - Combinatorics

Let n be an even positive integer. Write the numbers 1, 2, . . . , n2 in the squares of an
n× n grid from left to right. Color the squares of the grid so that half of the squares in
each row and in each column are red and the other half are black. Prove that for each
coloring, the sum of the numbers on the red squares is equal to the sum of the numbers
on the black squares.

Proof. I have two proofs. An outline of the first follows the approach of invariants.
Namely, we can start from a checkerboard pattern and repeatedly swap squares so that
the sum of the numbers on the red squares is equal to the sum of the numbers on the
black squares. It suffices to show that the group of colorings with the given conditions is
transitive under the transposition. This is easy to show with an algorithm approach: for
each square on a given board, we assign 1 if it differs from the checkerboard, otherwise
we assign 0. Then, we take the sum of the values. We can choose transpositions so that
the sum decreases on each turn, which must eventually terminate.

The other approach is as follows. For convenience, we subtract 1 from each square so
that it starts at 0. We can take the expansion in base n, so the value of each square s is
given by nf(s) + g(s) where 0 ≤ f(s), g(s) < n. If we let R denote the set of red numbers
and B the set of black numbers, note that

∑
s∈R f(s) =

∑
s∈B f(s) since the number of

red and black squares in each row is the same. Similarly,
∑

s∈R g(s) =
∑

s∈B g(s) since
the number of red and black squares in each column is the same. It follows that∑

s∈R
nf(s) + g(s) =

∑
s∈B

nf(s) + g(s).

§1.8 B2 - Algebra

Find all pairs (x, y) ∈ R2 satisfying the system

1

x
+

1

2y
= (x2 + 3y2)(3x2 + y2)

1

x
− 1

2y
= 2(y4 − x4).

Proof. An easy algebra exercise. Expanding the right-hand sides, then adding/subtracting
the equations, we obtain (x+ y)5 = 3 and (x− y)5 = 1 respectively. This has a unique

solution in R2,
(

31/5+1
2 , 31/5−1

2

)
.
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§1.9 B3 - Analysis

For any positive integer n, let 〈n〉 denote the closest integer to
√
n. Evaluate

∑∞
n=1

2〈n〉+2−〈n〉

2n .

Proof. We reindex the sum by summing over the fixed values of 〈n〉, which is non-
decreasing. Namely, we have

∞∑
n=1

2〈n〉 + 2−〈n〉

2n
=
∞∑
m=1

∑
〈n〉=m

2〈n〉 + 2−〈n〉

2n
=
∞∑
m=1

(2m + 2−m)
∑
〈n〉=m

2−n

 .

Note that 〈n〉 = m whenever n ∈ ((m−1/2)2, (m+1/2)2) = (m2−m+1/4,m2+m+1/4).
This happens for n ∈ [m2 −m+ 1,m2 +m]. Then, note that

m2+m∑
n=m2−m+1

2−n = (1− 2−m
2−m)− (1− 2−m

2+m) = 2−m
2+m − 2−m

2−m.

Combining the results, we have

∞∑
m=1

(2m + 2−m)(2−m
2+m − 2−m

2−m) =

∞∑
m=1

2−m
2+2m − 2−m

2−2m

=
∞∑
m=1

2−m(m−2) − 2−m(m+2)

=

∞∑
m=1

2−m(m−2) −
∞∑
m=3

2−(m−2)m

= 21 + 20 = 3.

§1.10 B4 - Number Theory

Let S = Q \ {−1, 0, 1}. Define f : S → S by f(x) = x− 1/x. Prove or disprove that

∞⋂
n=1

f (n)(S) = ∅.

Proof. The claim is true. Suppose we had x = p
q ∈

⋂∞
n=1 f

(n)(S), where (p, q) = 1. Then,

there is some m ∈ N so that f (m)(x) = x. However, note that

f

(
p

q

)
=
p2 − q2

pq
,

and |pq| > |q| since p 6∈ {−1, 0, 1}. Furthermore, note that (p2 − q2, pq) = 1. If there is
some prime r diving both p2 − q2 and pq, then we have that r divides one of p− q, p+ q
and one of p, q. However, from these we could conclude that r divides both p, q which
contradicts the fact that (p, q) = 1. It follows that since the denominators strictly increase,
we cannot have f (m)(x) = x.

7
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§1.11 B5 - Algebra

let a, b ∈ (0, 1/2) and let g be a continuous real-valued function such that g(g(x)) =
ag(x) + bx for all real x. Prove that g(x) = cx for some constant c.

Proof. First, note that g is injective. This is because g(x) = g(y) implies that g(g(x)) =
g(g(y)), which implies that ag(x) + bx = ag(y) + by, which implies that x = y. Since g is
continuous and injective, it follows that g is monotone.

We claim that g is unbounded, which implies that it is surjective. Suppose |g(x)| ≤M
for all x ∈ R. Then,

(a+ 1)M ≥ |g(g(x))− ag(x)| = |bx|,

which is a contradiction since bx is unbounded.
Now, let x0 ∈ R be arbitrary and define xn+1 = g(xn), xn−1 = g−1(xn). The original

functional equation gives a linear recurrence relation

xn+2 = axn+1 + bxn.

The corresponding characteristic polynomial is λ2 − aλ− b, which has two distinct roots

λ± = a±
√
a2+4b
2 , since a, b ∈ (0, 1/2). It follows that

xn = c+λ
n
+ + c−λ

n
−

for constants c+, c−.
Note that λ+ > 0, λ− < 0 and 1 > |λ+| > |λ−|.
Suppose f is monotone increasing(the case where f is monotone decreasing is similar).

If c− 6= 0 then as n gets sufficiently small, λn− dominates λn+, so there is some large enough
n so that 0 < xn < xn+2 and xn+3 < xn+1 < 0, which would give that g(xn) > g(xn+2), a
contradiction. It follows that c− = 0, so we have x0 = c+ and g(x0) = x1 = c+λ+ = λ+x0,
which gives the result.

§1.12 B6 - Algebra/Combinatorics

Assume (an)n≥1 is an increasing sequence of positive real numbers such that lim an/n = 0.
Must there exist infinitely many positive integers n such that an−i + an+i < 2an for
i = 1, 2, . . . , n− 1?

Proof. Let A = Conv{(n, an) : n ∈ N} and let ∂A denote the set of points on the
boundary of the convex hull.

We claim that ∂A contains infinitely many elements. Suppose not. Then, ∂A has a
last point (N, aN ). If we let m = supn>N

an−aN
n−N , the slope of the line between (N, aN )

and (n, an), then the line through (N, aN ) with slope m lies above(or contains) each
point (n, an) for n > N . However, since an/n→ 0 and aN , N are fixed, we have that

an − aN
n−N

→ 0.

This implies that the set of slopes attains a maximum, i. e. there is some point (M,aM )
with M > N so that m = aM−aN

M−N . But then, we must also have that (M,aM ) ∈ ∂A,
contradicting the fact that (N, aN ) is the last point in ∂A.

For each point on the boundary (n, an) ∈ ∂A, we must have that midpoint of the line
through (n− i, an−i) and (n+ i, an+i) for i ∈ [n− 1] must lie below (n, an). From this, it
follows that an >

an−i+an+i

2 , which implies the result.

8
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§2 Putnam - 2002

§2.1 A1 - Algebra

Let k ∈ N. The n-th derivative of 1/(xk − 1) has the form Pn(x)/(xk − 1)n+1 where
Pn(x) is a polynomial. Find Pn(1).

Proof. We can write

Pn(x)

(xk − 1)n+1
=

d

dx

(
Pn−1(x)

(xk − 1)n

)
=

(xk − 1)nP ′n−1(x)− nkxk−1(xk − 1)n−1Pn−1(x)

(xk − 1)2n

=⇒ Pn(x) = (xk − 1)P ′n−1(x)− nkxk−1Pn−1(x).

Plugging in x = 1 gives a recurrence relation Pn(1) = −nkPn−1(x). It follows that

Pn(1) = n!(−k)nP0(x) = n!(−k)n.

§2.1.1 Official Solution

An alternate solution comes from expanding 1
xk−1

in a Laurent series around 1.

Proof. It suffices to keep track of the O((x− 1)−1) terms since the others vanish upon
plugging in 1.

Note that
1

xk − 1
=

1

k(x− 1) + . . .
=

1

k
(x− 1)−1 + . . . .

Taking the n-th, derivative, we have obtain

dn

dxn
1

xk − 1
=

(−1)nn!

k(x− 1)−n−1
+ . . . .

It follows that

Pn(x) = (xk − 1)n+1 d
n

dxn
1

xk − 1

= (k(x− 1) + . . . )n+1

(
(−1)nn!

k(x− 1)−n−1
+ . . .

)
= kn(−1)nn! + . . . .

§2.2 A2 - Combinatorics

Given any five points on a sphere, show that some four of them must lie on a closed
hemisphere.

Proof. Draw a great circle through any two points and consider the remaining three.
By the pigeonhole principle, there is closed hemisphere with at least two points, and
choosing this hemisphere gives the result.

9
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§2.3 A3 - Combinatorics

Let n ≥ 2 be an integer and Tn the number of nonempty subsets S of {1, 2, . . . , n} with
the property that the average of the elements of S is an integer. Prove that Tn − n is
always even.

Proof. Note that each one element subset {1}, {2}, . . . , {n} has the property that the
average of the element is an integer. It suffices to consider the subsets at least 2 elements.
For set of size at least 2, we can pair them into (S, S ∪{a}), where a 6∈ S and the average
of the elements in S is a. Each subset is contained in exactly one pair, so each of them
don’t contribute to the parity of Tn − n. It follows that Tn − n is even as desired.

§2.4 A4 - Combinatorics

in Determinant Tic-Tac-Toe, Player 1 enters a 1 in an empty 3 × 3 matrix. Player 0
counters with a 0 in a vacant position, and play continues in turn until the matrix is
completed with five 1’s and four 0’s. Player 0 wins if the determinant is 0 and player 1
wins otherwise. Who wins and how?

Proof. Player 0 wins. After exchanging rows and columns(which doesn’t change the
norm of the determinant), we can assume without loss of generality that player 1 enters
a 1 in the a11 square.

In the optimal strategy, player 0 enters a 0 in the a22 square. There are 3 possible
cases to check for player 1’s next move:

1. a12 or a21,

2. a13 or a31,

3. a23 or a32,

4. a33.

For each of these cases, it suffices to check the first since we can exchange aij with aji in
order to obtain the strategy in the other corresponding case. Note that if player 0 creates
a row/column of 0’s or a 2× 2 block of 0’s, the determinant of the matrix will be 0.

(1) When player 1 enters a 1 in a12, player 0 enters a 0 in square a32. If player 1 enters
in a21 or a23, player 0 enters in a33 or a31 respectively. In this position, player 1 cannot
stop player 0 from creating a 2× 2 block or a row of 0’s. Alternatively, if player 1 enters
in a13, player 0 enters in a21. In this position, player 1 cannot stop player 0 from creating
a 2× 2 block or a row of 0’s. In the other cases, we take a knight’s move across whatever
player 1 plays and in this position, player 1 cannot stop player 0 from creating a 2× 2
block or a row of 0’s.

The other cases follow a similar analysis, creating a triangle block of 0’s in other to
create two threats.

§2.5 A5 - Number Theory

Define a sequence by a0 = 1, together with the rules a2n+1 = an and a2n+2 = an + an+1

for each integer n ≥ 0. Prove that every positive rational number appears in the set
{an/an+1 : n ≥ 0}.

10
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Proof. We proceed by induction on k = max{p, q : gcd(p, q) = 1}. For k = 1, we know
that a0 = a1 = 1 so we have 1/1, which contains all the rational numbers p/q with
max{p, q} ≤ 1. Suppose the set contains all the rationals p/q with max{p, q : gcd(p, q) =
1} ≤ n. Then it contains n+1−k

k for 1 ≤ k ≤ n whenever gcd(n+ 1− k, k) = 1. Note that
gcd(n+ 1− k, k) = 1⇔ gcd(n+ 1, k) = 1.

It follows that we have am = `(n + 1 − k), am+1 = `(k) for some ` ∈ N. Then,
a2m+1 = `(n+ 1− k), a2n+2 = `(n+ 1) and a2n+3 = `(k). It follows that the set contains

n+ 1− k
n+ 1

,
n+ 1

k

for each 1 ≤ k ≤ n so that gcd(n+ 1, k) = 1, which proves the inductive step.

§2.6 A6 - Analysis

Fix an integer b ≥ 2. Let f(1) = 1, f(2) = 2, and for each n ≥ 3, define f(n) = nf(d),
where d is the number of base-b digits of n. For which values of b does the sum∑

n≥1 1/f(n) converge?

Proof. The sum converges for b = 2 and diverges for b ≥ 3.
We first consider b ≥ 3. Suppose the sum converges. Note that we can write

∞∑
n=1

1

f(n)
=

∞∑
d=1

1

f(d)

bd−1∑
n=bd−1

1

n
.

Note that
∑bd−1

n=bd−1
1
n is a left-endpoint Riemann approximation for the integral

∫ bd
bd−1

1
x

and the function 1
x is monotonically decreasing on this interval so it follows that

bd−1∑
n=bd−1

1

n
>

∫ bd

bd−1

1

x
= log b.

However, this implies that
∞∑
n=1

1

f(n)
> log b

∞∑
d=1

1

f(d)
,

which is a contradiction since log b > 1.
Now, we show that the sum converges in the case of b = 2. Let C = log 2 + 1

8 < 1. We
prove by induction that for each m ∈ N,

2m−1∑
n=1

1

f(m)
< 1 +

1

2
+

1

6(1− C)
= L.

For m = 1, 2, the result is clear. Suppose it is true for all m ∈ {1, 2, . . . , N − 1}. Note
that

2N−1∑
n=1

1

f(n)
= 1 +

1

2
+

1

6
+

N∑
d=3

1

f(d)

2d−1∑
n=2d−1

1

n
.

11
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Then, using a right-endpoint Riemann approximation, we have

2d−1∑
n=2d−1

1

n
=

1

2d−1
− 1

2d
+

2d∑
n=2d−1+1

1

n

< 2−d +

∫ 2d

2d−1

dx

x

<
1

8
+ log 2 = C.

It follows that

1 +
1

2
+

1

6
+

N∑
d=3

1

f(d)
< 1 +

1

2
+

1

6
+ C

N∑
d=3

1

f(d)
(1)

< 1 +
1

2
+

1

6
+

C

6(1− C)
(2)

= 1 +
1

2
+

1

6(1− C)
= L, (3)

where we used the strong induction hypothesis to obtain (2).

§2.7 B1 - Probability

Shanille shoots free throws on a basketball court. She hits the first and misses the second,
and thereafter the probability that she hits the next shot is equal to the proportion of
shots she has hit so far. what is the probability she hits exactly 50 of her first 100 shots?

Proof. We claim the probability of hitting exactly k shots after n throws for k ∈
{1, . . . , n− 1}is 1

n−1 . For n = 2, this is clear. If we suppose the result is true for n = m,
the probability of making k shots after m+ 1 throws is

k − 1

m
· 1

m− 1
+
m− k
m

· 1

m− 1
=

m− 1

m(m− 1)
=

1

m
,

which proves the inductive hypothesis.

§2.8 B2 - Combinatorics

Consider a polyhedron with at least five faces such that exactly three edges emerge from
each of its vertices. Two players play the following game: Each, in turn, signs his or
her name on a previously unsigned face. The winner is the player who first succeeds in
signing three faces that share a common vertex. Show that the player who signs first will
always win by playing as well as possible.

Proof. First, we claim that any such polyhedron has a face with at least 4 edges. The
proof is as follows. Let V,E, F denote the number of vertices, edges, and faces respectively.
For sake of contradiction, suppose that each face has exactly 3 edges. We can count
the number of edges by counting 3 edges for each face, but dividing by 2 since each
edge connects exactly 2 faces. It follows that E = 3F

2 . Similarly, V = 2E
3 = F , since we

can count two vertices for each edge, but dividing by 3 since each vertex has exactly 3
outgoing edges. By Euler’s formula, we have

2 = V − E + F = 2F − 3F

2
=
F

2
=⇒ F = 4,

12
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which is a contradiction since F ≥ 5.
Now, take the face with at least 4 edges, call it F0. Player 1 signs in F0. If player 2

does not sign in a face adjacent to F0, then player 1 can sign in any face adjacent to F0.
At this point, player 2 cannot stop player 1 from signing three faces that share a common
vertex since there are two threats. Hence, we can suppose player 2 does sign in a face
adjacent to F0, call it F1. Since the face has at least 4 edges, we can sign in a square
adjacent to F0 that is not adjacent to F1. at this point, player 2 cannot stop player 1
from signing three faces that share a common vertex since there are two threats.

§2.9 B3 - Analysis

Show that for n > 1,
1

2ne
<

1

e
−
(

1− 1

n

)n
<

1

ne
.

Proof. Multiplying by e and subtracting from 1, we have

1− 1

n
< e

(
1− 1

n

)n
< 1− 1

2n
.

Taking the logarithm(which is monotonically increasing), we equivalently have

log(1− 1/n) < 1 + n log(1− 1/n) < log(1− 1/(2n)).

Finally, noting the Taylor series expansion of log(1 + x) = −
∑

k≥1
(−x)k

k (which converges
for x ∈ (−1, 1)), we have

−
∑
k≥1

1

knk
< 1− n

∑
k≥1

1

knk
< −

∑
k≥1

1

k(2n)k

or equivalently ∑
k≥1

1

k(2n)k
<
∑
k≥1

1

(k + 1)nk
<
∑
k≥1

1

knk
,

which is evidently true since k2k > k + 1 and k + 1 > k for k ≥ 1.

§2.10 B4 - Combinatorics

An integer n, unknown to you, has been randomly chosen in the interval [1, 2002] with
uniform probability. Your objective is to select n in an odd number of guess. After each
incorrect guess, you are informed whether n is higher or lower, and you must guess an
integer on your next turn among the numbers that are still feasibly correct. Show that
you have a strategy so that the chance of winning is greater than 2

3 .

Proof. Guess the sequence of numbers 1, 3, 4, 6, 7, . . . alternating between x ≡ 1 (mod 3)
and x ≡ 1 (mod 3). If the chosen integer is 1 (mod 3), then it will be chosen in an
odd turn. If the chosen integer is 0 (mod 3), then it will be chosen in an even turn.
Otherwise, it is n ≡ 2 (mod 3) so it will be chosen immediately after n + 1 is chosen,
which happens after an even turn, so it is an odd turn. This gives a chance of winning of
at least 2/3 as desired.

13
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§2.11 B5 - Number Theory

A palindrome in base b is a positive integer whose base-b digits read the same backwards
and forwards; for example, 2002 is a 4-digit palindrome in base 10. Note that 200 is not
a palindrome in base 10, but it is a 3-digit palindrome: 242 in base 9, and 404 in base 7.
Prove that there is an integer which is a 3-digit palindrome in base b for at least 2002
different values of b.

Proof. Let N = 2002!. We claim that N2 is a 3-digit palindrome in base bd = N
d − 1

for each d ∈ {1, 2, . . . , 2002}. Note that 2d2 < 2002!
d − 1 for each d ∈ {1, 2, . . . , 2002}. It

follows that we can write

([d2][2d2][d2])bd = d2

(
N

d
− 1

)2

+ 2d2

(
N

d
− 1

)
+ d2

= N2 − 2Nd− d2 + 2Nd− 2d2 + d2

= N2.

§2.12 B6 - Number Theory

Let p be a prime number. Prove that the determinant of the matrix x y z
xp yp zp

xp
2

yp
2

zp
2


is congruent modulo p to a product of polynomials of the form ax + by + cz, where
a, b, and c are integers. (We say two integer polynomials are congruent modulo p if
corresponding coefficients are congruent modulo p.)

Proof. Note that the determinant

P (x, y, z) =
∑
cyc

x(ypzp
2 − zpyp2),

which is a polynomial of degree p2 + p+ 1 in x, y, z.

14
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Suppose not all of a, b, c are zero. Without loss of generality, a 6= 0. Note that

aP (x, y, z) =

∣∣∣∣∣∣
ax y z
axp yp zp

axp
2

yp
2

zp
2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ax+ by + cz y z

axp + byp + czp yp zp

axp
2

+ byp
2

+ czp
2

yp
2

zp
2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ax+ by + cz y z

apxp + bpyp + cpzp yp zp

ap
2
xp

2
+ bp

2
yp

2
+ cp

2
zp

2
yp

2
zp

2

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ax+ by + cz y z

(ax+ by + cz)p yp zp

(ax+ by + cz)p
2

yp
2

zp
2

∣∣∣∣∣∣
= (ax+ by + cz)

∣∣∣∣∣∣
1 y z

(ax+ by + cz)p−1 yp zp

(ax+ by + cz)p
2−1 yp

2
zp

2

∣∣∣∣∣∣
It follows that P (x, y, z) divides (ax+ by + cz) whenever a, b, c are not all zero in Z/pZ.

This includes p3−1
p−1 = p2 +p+1 terms(where we divide p−1 to account for scaling), which

is exactly the degree of the polynomial. Since Z/pZ is a field, it is a unique factorization
domain, so it follows that P (x, y, z) is exactly the product of ax+ by + cz for each a, b, c
not all zero in Z/pZ(up to some constant), which proves the result.
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§3 Putnam 2003

§3.1 A1 - Combinatorics

Let n be a fixed positive integer. How many ways are there to write n as a sum of positive
integers,

n = a1 + a2 + · · · ak
with k an arbitrary positive integer and a1 ≤ a2 ≤ · · · ≤ ak ≤ a1 + 1? For example, with
n = 4, there are four ways: 4, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1.

Proof. We claim that for each fixed positive integer n, there are exactly n ways to
write it as a sum of positive integers satisfying the above conditions. We can prove
this by induction on n For m = 1, the result is clear. Suppose it is true for n = k. It
suffices to prove the result for n = k + 1. By the inductive hypothesis, we can write
k = a1 + a2 + · · ·+ a` in k ways. For each combination, note that if we take b` = a1 + 1
and bj = aj+1 for 1 ≤ j ≤ `− 1, then

k + 1 = 1 + a1 + · · ·+ a` = b1 + b2 + · · ·+ b`

is a valid combination for k + 1. There is exactly one indistinguishable way to group the
extra 1 since grouping with another aj = a1 is indistinguishable and if we group with
aj = a1 + 1, then the overall sum does not satisfy the condition that the last term is
bounded by one more than the first term. Hence, we have exactly k sums of the above
form. We have exactly one additional combination given by the sum of k + 1 1’s, which
is a total of k + 1 ways, as desired.

§3.2 A2 - Algebra

Let a1, a2, · · · , an and b1, b2, · · · , bn be nonnegative real numbers. Show that

(a1a2 · · · an)1/n + (b1b2 · · · bn)1/n ≤ ((a1 + b1)(a2 + b2) · · · (an + bn))1/n

Proof. This is a direct application of Holder’s Inequality.

§3.2.1 Alternate Solution

Proof. Note that

( ∏n
k=1 ak∏n

k=1(ak + bk)

)1/n

+

( ∏n
k=1 bk∏n

k=1(ak + bk)

)1/n

=

(
n∏
k=1

ak
ak + bk

)1/n

+

(
n∏
k=1

bk
ak + bk

)1/n

≤ 1

n

n∑
k=1

ak
ak + bk

+
1

n

n∑
k=1

bk
ak + bk

=
1

n

n∑
k=1

ak + bk
ak + bk

=
1

n

n∑
k=1

1 = 1.

Multiplying both sides of the inequality by
∏n
k=1(ak + bk)1/n gives the desired result.
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§3.3 A3 - Calculus

Find the minimum value of

| sinx+ cosx+ tanx+ cotx+ secx+ cscx|

for real numbers x.

Proof. We claim the minimum value is given by 2
√

2− 1. Let y = π/4− x. Note that

sinx+ cosx =
√

2 cos(π/4− x) =
√

2 cos y,

sinx cosx =
1

2
sin(2x) =

1

2
cos(π/4− 2x) =

1

2
cos 2y = cos2 y − 1

2
.

Let u =
√

2 cos y.

sinx+ cosx+ tanx+ cotx+ secx+ cscx = sinx+ cosx+
1

sinx cosx
+

sinx+ cosx

sinx cosx

= u+
2

u2 − 1
+

2u

u2 − 1

= u+
2(u+ 1)

u2 − 1
.

We wish to find the minimum value of |f(u)| where f(u) = u+ 2(u+1)
u2−1

and u ∈ [−
√

2,
√

2].
Note that at for u = −1, the possible values of y are 5π/4 and 7π/4. At these values,
the desired expression takes the values 2 and 2 +

√
2 respectively. Assuming u 6= 1, we

can write f(u) = u+ 2
u−1 .

Note that

f(
√

2) =
√

2 +
2√

2− 1
=

4−
√

2√
2− 1

= 2 + 3
√

2,

f(−
√

2) = −
√

2− 2√
2 + 1

= −4 +
√

2√
2 + 1

= 3
√

2− 2.

Furthermore,

f ′(u) = 1− 2

(u− 1)2
,

which has critical points at u = 1±
√

2, but 1 +
√

2 is outside of [−
√

2,
√

2], so it suffices
to check u0 = 1−

√
2.

At this point

f(u0) = 1−
√

2− 2√
2

= 1− 2
√

2.

Comparing all the critical values using the approximation
√

2 = 1.41 + O(|.01|), we
find that the minimum possible value of |f(u)| is given by 2

√
2− 1.
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§3.4 A4 - Algebra

Suppose that a, b, c, A,B,C are real numbers, a 6= 0 and A 6= 0, such that

|ax2 + bx+ c| ≤ |Ax2 +Bx+ C|

for all real numbers x. Show that

|b2 − 4ac| ≤ |B2 − 4AC|

Proof. First, note that we must have that |a| ≤ |A| which we can show by taking the
limit in the given expression. Let δ = b2 − 4ac, ∆ = B2 − 4AC. We can also define
p(x) = ax2 + bx+ c and P (x) = Ax2 +Bx+ C. We proceed by cases on the sign on ∆.

• Case 1: ∆ > 0.

In this case, we have that P (x) = A(x − r1)(x − r2) for r1, r2 ∈ R. Then, we
have that |p(r1)| ≤ |P (r1)| = 0 and |p(r2)| ≤ |P (r2)| = 0 so it follows that
p(x) = a(x− r1)(x− r2). Since both polynomials have the same roots, it follows

that
√
δ
a =

√
∆
A , which is exactly the distance between r1 and r2. It follows that

|δ| ≤ |a|
2

|A|2
|∆| ≤ |∆|.

• Case 2: ∆ = 0.

In this case, we have that P (x) = A(x − r)2 for r ∈ R. As before, we have that
p(r) = 0. Suppose that p(x) = a(x − r)(x − s) for some s ∈ R. Note that we
also have P ′(r) = 0 since this is the vertex of the parabola. If s 6= r, then we
must have that |p′(r)| > 0 since r is not the vertex. It follows that the graphs of
|p(x)| and |P (x)| intersect in the interval [s, r](or [r, s] depending on r), which is a
contradiction. It follows that p(x) = a(x− r)2. Hence, δ = ∆ = 0.

• Case 3: ∆ < 0.

In this case, we have that P (x) = A(x − Z1)(x − Z2) for Z1, Z2 ∈ C. Note that
|P (x)| is minimized at Z∗ = Z1+Z2

2 . Suppose that p(x) = a(x− z1)(x− z2) and let
z∗ = z1+z2

2 . We have that

|A(Z1 − Z2)2|
4

= |P (Z∗)| ≥ |P (z∗)| ≥ |p(z∗)| =
|a(z1 − z2)2|

4
,

so it follows that |z1 − z2| ≥ |Z1 − Z2| which proves that |δ| ≤ |∆| using the same
method as in Case 1.
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§3.5 A5 - Combinatorics

A Dyck n-path is a lattice path of n upsteps (1, 1) and n downsteps (1,−1) that starts
at the origin O and never dips below the x-axis. A return is a maximal sequence of
contiguous downsteps that terminates on the x-axis. For example, the Dyck 5-path
illustrated has two returns, of length 3 and 1 respectively. Show that there is a one-to-one
correspondence between the Dyck n-paths with no return of even length and the Dyck
(n− 1) paths.

O
�
�
�@@�

�
�@
@
@
@
@�
�@
@àbc àbc àbc àbc àbc àbc àbc àbc àbc àbc àbc

Proof. Let Dn−1 be the set of (n − 1)-Dyck paths and let On ne the set of n-Dyck
paths with no return of even length. We can define functions f : Dn−1 → On and
g : On → Dn−1 with f ◦ g = idOn and g ◦ f = idDn−1 .

We define f as follows. Let p = a1a2 . . . a2n−2 ∈ Dn−1. If p has no return of even
length, we can construct a path f(p) = (1, 1)(1,−1)p ∈ On. Otherwise, suppose p has at
least one return of even length. Suppose that ai . . . aj is the last return of even length
in p. Then, we can define f(p) = (1, 1)a1 . . . ai . . . aj(1,−1)aj+1 . . . a2n−2. This is in On
because the operation f(p) removes all the returns before the last return of even length,
which we extend to a return of odd length.

Next, we define g. Let p = a1a2 . . . a2n ∈ On. Suppose ai . . . aj is the first return of
p. We can define f(p) = a2 . . . ai . . . aj−1aj+1 . . . a2n. This is in Dn−1 because a1 = (1, 1)
and aj = (1,−1), so the remaining path remains above 0 at all times.

It is easy to verify that these functions satisfy the desired condition which gives the
desired 1− 1 correspondence.
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§3.6 A6 - Combinatorics

For a set S of nonnegative integers, let rS(n) denote the number of ordered pairs (s1, s2)
such that s1 ∈ S, s2 ∈ S, s1 6= s2, and s1 + s2 = n. Is it possible to partition the
nonnegative integers into two sets A and B in such a way that rA(n) = rB(n) for all n?

Proof. WLOG suppose 1 ∈ A, 0 ∈ B. Define f(x) =
∑

n∈A x
n, g(x) =

∑
n∈B x

n with
|x| < 1. Note that f(x) + g(x) =

∑∞
n=0 x

n = 1
1−x . Furthermore, note that

rA(n) = [xn](f(x2)− f(x)2), rB(n) = [xn](g(x2)− g(x)2),

where [xn](·) denotes the n-th coefficient of the power series ·.
We wish to show that there exists a choice A t B = N so that f(x2) − f(x)2 =

g(x2)− g(x)2. Equivalently, we have

f(x)− g(x)

f(x2)− g(x)2
=

1

f(x) + g(x)
= 1− x,

and replacing x→ x2k we obtain

f(x2k)− g(x2k)

f(x2k+1)− g(x2k+1)
= 1− x2k .

Taking the product of successive terms gives a telescoping product

f(x)− g(x) =

(
n−1∏
k=0

(1− x2k)

)
(f(x2n+1

)− g(x2n+1
)).

Taking the limit as n→∞ and noting that f(0) = 1, g(0) = 0 by assumption, we have

f(x)− g(x) =
∞∏
k=0

(1− x2k).

Furthermore, if we let sj = 0 if j ∈ A, sj = 1 if j ∈ B, then we have

f(x)− g(x) =
∞∑
n=0

(−1)snxn =
∞∏
k=0

(1− x2k).

The positive terms in the product correspond to an even number of terms, or equivalently
the integers n where the sum of the digits in the binary expansion is even. It follows that
taking A to be the integers where the sum of the digits in the binary expansion is even
and B the integers where the sum of the digits in the binary expansion is odd satisfies
the problem statement.
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§3.7 B1 - Algebra

Do there exist polynomials a(x), b(x), c(y), d(y) such that

1 + xy + x2y2 = a(x)c(y) + b(x)d(y)

holds identically?

Proof. We claim no such polynomials exist. For a polynomial P (x, y) =
∑n

i=0

∑n
j=0 aijx

iyj

where n is the degree of P , we can alternatively represent it with the matrix A = (aij).
Let n = max(deg a,deg b,deg c,deg y). Note that 1 + xy+ x2y2 corresponds to the n× n
matrix P = (pij) with p11 = p22 = p33 = 1 and pij = 0 for all other entries. We
can represent a(x), b(x), c(y), d(y) with column and row vectors respectively given by
A,B,C,D. Note that rank(AC) ≤ min(rankA, rankC) and the rank of the row and
column vectors are at most 1. It follows that

rank(AC +BD) ≤ rankAC + rankBD ≤ 2,

but we know that rankP = 3, so we cannot have P = AC +BD.
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§3.8 B2 - Combinatorics

Let n be a positive integer. Starting with the sequence 1, 1
2 ,

1
3 , · · · ,

1
n , form a new sequence

of n− 1 entries 3
4 ,

5
12 , · · · ,

2n−1
2n(n−1) , by taking the averages of two consecutive entries in

the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a
third sequence of n− 2 entries and continue until the final sequence consists of a single
number xn. Show that xn <

2
n .

Proof. We claim that xn = 2
n −

1
n2n−1 , which proves the result.

First, we show by induction that the j-th entry of the k-th sequence is given by

1

2k−1

k∑
i=1

1

i+ j − 1

(
k − 1

i− 1

)
.

For k = 1, the formula gives the desired starting sequence. If we suppose it holds for the
k-th row, then note that

1

2

(
1

2k−1

k∑
i=1

1

i+ j − 1

(
k − 1

i− 1

)
+

1

2k−1

k∑
i=1

1

i+ (j + 1)− 1

(
k − 1

i− 1

))

=
1

2k

(
1

j
+

1

k + j
+

k−1∑
i=2

1

i+ j

((
k − 1

i− 2

)
+

(
k − 1

i− 1

)))

=
1

2k

(
1

j
+

1

k + j
+

k−1∑
i=2

1

i+ j

(
k

i− 1

))

=
1

2k

k∑
i=1

1

i+ j − 1

(
k

i− 1

)
.

Using this result, it follows that

xn =
1

2n−1

n∑
i=1

1

i

(
n− 1

i− 1

)

=
1

2n−1

n∑
i=1

1

n

(
n

i

)
=

1

n2n−1
(2n − 1)

=
2

n
− 1

n2n−1
.
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§3.9 B3 - Number Theory

Show that for each positive integer n,

n! =

n∏
i=1

lcm {1, 2, . . . ,
⌊n
i

⌋
}

(Here lcm denotes the least common multiple, and bxc denotes the greatest integer ≤ x.)

Proof. Let v(n) for p prime, n ∈ N denote the exponent of p in the prime factorization
of n. Note that

vp

(
n∏
k=1

lcm{1, 2, . . . , bn/kc}

)
=

n∑
k=1

vp (lcm{1, 2, . . . , bn/kc})

=

n∑
k=1

⌊
logp bn/kc

⌋
=

n∑
k=1

∑
`:bn/kc≥p`

1

=

∞∑
`=1

⌊
n/p`

⌋
.

This is exactly vp(n!) by Legendre’s Theorem.

§3.10 B4 - Algebra

Let f(z) = az4 + bz3 + cz2 + dz + e = a(z − r1)(z − r2)(z − r3)(z − r4) where a, b, c, d, e
are integers, a 6= 0. Show that if r1 + r2 is a rational number, and if r1 + r2 6= r3 + r4,
then r1r2 is a rational number.

Proof. Let s1 = r1 + r2, s2 = r3 + r4, p1 = r1r2, p2 = r3r4. Without loss of generality, we
may assume f is a monic polynomial with rational coefficients. Note that we can write

f(z) = (z2 − s1z + p1)(z2 − s2z + p2)

= z4 − (s1 + s2)z3 + (p1 + p2 + s1s2)z2 − (s1p2 + s2p1)z + p1p2.

Now, note the following:

1. Since −s1 − s2 = b ∈ Q and s1 ∈ Q, we have that s2 = −s1 − b ∈ Q.

2. Since p1 + p2 + s1s2 = c ∈ Q and s1s2 ∈ Q, we have that p1 + p2 = c− s1s2 ∈ Q.

3. We can write

d = −s1p2 − s2p1

= −s1p2 − s2p1 + s1p1 − s1p1

= −s1(p1 + p2) + (s1 − s2)p1.

Since s1 6= s2, it follows that

p1 =
d+ s1(p1 + p2)

s1 − s2
∈ Q.
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§3.11 B5 - Geometry

Let A, B and C be equidistant points on the circumference of a circle of unit radius
centered at O, and let P be any point in the circle’s interior. Let a, b, c be the distances
from P to A, B, C respectively. Show that there is a triangle with side lengths a, b, c,
and that the area of this triangle depends only on the distance from P to O.

Proof. Let ω = e2πi/3, A = 1, B = ω, C = ω2, P = z ∈ C with |z| < 1. We have

a = |z − 1|, b = |z − ω|, c = |z − ω2|.

Note that

(z − 1) + ω(z − ω) + ω2(z − ω2) = z(1 + ω + ω2)− (1 + ω2 + ω4) = 0.

The corresponding triangle, where we visualize the complex numbers as vectors that are
sides of the triangle, has side lengths of a, b, c as desired.

The area of the triangle is given by

|(z − 1)ω(z − ω)− z − 1ω(z − ω)|/4 = |(z − 1)(ω2z − ω)− (z − 1)(ωz − ω2)|/4
= |zzω2 − ω2z − zω + ω − zzω + ωz + zω2 − ω2|/4
= |(zz − 1)(ω2 − ω)|/4

=
(1− |z|2)

√
3

4
,

which is a function of z, as desired.
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§3.12 B6 - Analysis

Let f(x) be a continuous real-valued function defined on [0, 1]. Show that∫ 1

0

∫ 1

0
|f(x) + f(y)| dxdy ≥

∫ 1

0
|f(x)| dx.

Proof. Let f+ = max(f(x), 0) and f− = f+ − f . Let A = supp f+, B = supp f−. We
will denote ‖g‖ =

∫ 1
0 |g(x)| dx.

Note that∫ 1

0

∫ 1

0
|f(x) + f(y)| dxdy =

(∫∫
A×A

+

∫∫
B×B

+2

∫∫
A×B

)
|f(x) + f(y)| dxdy.

Note that∫∫
A×A
|f(x) + f(y)| dxdy =

∫∫
A×A

(f(x) + f(y)) dxdy

=

∫∫
A×A

f(x) dxdy +

∫∫
A×A

f(y) dxdy

= 2|A|‖f+‖.

Similarly,
∫∫
B×B |f(x) + f(y)| dxdy = 2|B|‖f−‖.

Finally, note that∫∫
A×B

|f(x) + f(y)| dxdy =

∫∫
A×B

|f+(x)− f−(y)| dxdy

≥
∣∣∣∣∫∫

A×B
(f+(x)− f−(y)) dxdy

∣∣∣∣
= ||B|‖f+‖ − |A|‖f−‖|.

Combining the results, we have that∫ 1

0

∫ 1

0
|f(x) + f(y)| dxdy ≥ 2|A|‖f+‖+ 2|B|‖f−‖+ 2||B|‖f+‖ − |A|‖f−‖|.

Squaring both sides of the expression, we have that(∫ 1

0

∫ 1

0
|f(x) + f(y)| dxdy

)2

≥
(
2|A|‖f+‖+ 2|B|‖f−‖+ 2||B|‖f+‖ − |A|‖f−‖|

)2
= 4(|A|‖f+‖+ |B|‖f−‖+ ||B|‖f+‖ − |A|‖f−‖|)2

= 4(|A|‖f+‖+ |B|‖f−‖)2 + 4(|B|‖f+‖ − |A|‖f−‖)2 + 8(|A|‖f+‖+ |B|‖f−‖)||B|‖f+‖ − |A|‖f−‖|
≥ 4(|A|2‖f+‖2 + |B|2‖f−‖2 + |A|2‖f−‖2 + |B|2‖f+‖2)

≥ 4(|A|2 + |B|2)(‖f+‖2 + ‖f−‖2)

≥ (|A|+ |B|)2(‖f+‖+ ‖f−‖)2

= (1)2(‖f‖)2

=

(∫ 1

0
|f(x)| dx

)2

.
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§4 Putnam - 2004

§4.1 A1 - Number Theory

Basketball star Shanille O’Keal’s team statistician keeps track of the number, S(N), of
successful free throws she has made in her first N attempts of the season. Early in the
season, S(N) was less than 80% of N, but by the end of the season, S(N) was more than
80% of N. Was there necessarily a moment in between when S(N) was exactly 80% of
N?

Proof. We claim that such a moment must exist. Suppose not. Then, there exists some
value of N so that

S(N)

N
<

4

5
,
S(N) + 1

N + 1
>

4

5
.

Cross-multiplying, this gives that

5S(N) < 4N, 5S(N) > 4N − 1,

but this system of inequalities has no solutions in integers.

§4.2 A2 - Geometry

For i = 1, 2, let Ti be a triangle with side length ai, bi, ci, and area Ai. Suppose that
a1 ≤ a2, b1 ≤ b2, c1 ≤ c2, and that T2 is an acute triangle. Does it follow that A1 ≤ A2?

Proof. We claim that it does follow.
Let Ri be the angle between ai and bi, Si the angle between bi and ci and Ti the angle

between ci and ai. Note that

R1 + S1 + T1 = R2 + S2 + T2 = π,

so we must have at least one of R1 ≤ R2, S1 ≤ S2 or T1 ≤ T2. Without loss of generality,
suppose that R1 ≤ R2. We have that

A1 =
a1b1 sinR1

2
≤ a2b2 sinR2

2
= A2,

as desired.

§4.3 A3 - Algebra

Define a sequence {un}∞n=0 by u0 = u1 = u2 = 1, and thereafter by the condition that

det

∣∣∣∣ un un+1

un+2 un+3

∣∣∣∣ = n! for all n ≥ 0. Show that un is an integer for all n. (By convention,

0! = 1.)

Proof. Show by induction that a2n = (2n − 1)(2n − 3) . . . (3)(1), a2n+1 = (2n)(2n −
2) . . . (2).
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§4.4 A4 - Algebra

Show that for any positive integer n there is an integer N such that the product x1x2 · · ·xn
can be expressed identically in the form

x1x2 · · ·xn =

N∑
i=1

ci(ai1x1 + ai2x2 + · · ·+ ainxn)n

where the ci are rational numbers and each aij is one of the numbers, −1, 0, 1.

Proof. Define P (x1, . . . , xn) =
∑

ei∈{−1,1}(e1e2 . . . en)(e1x1 + · · ·+ enxn)n. Note that

P (0, x2, . . . , xn) =
∑

ei∈{−1,1}

(e1e2 . . . en)(e2x2 · · ·+ enxn)n

=
∑

e1=1,ei∈{−1,1}

(e2 . . . en)(e2x2 · · ·+ enxn)n +
∑

e1=−1,ei∈{−1,1}

(−e2 . . . en)(e2x2 · · ·+ enxn)n

= 0.

Similarly, P (x1, . . . , xi, 0, xi+2, . . . , xn) = 0 so it follows that xi | P (x1, . . . , xn) for all i.
This implies that x1x2 . . . xn | P (x1, . . . , xn). So we must have

P (x1, . . . , xn) = x1 . . . xnQ(x1, . . . , xn).

However, degP = n, which implies that degQ = 0. In other words,

P (x1, . . . , xn) = λx1 . . . xn

for some λ 6= 0. It is clear that λ ∈ Z since P (x1, . . . , xn) is an integer linear combination
of integer polynomials. Then, x1 . . . xn = 1

λP (x1, . . . , xn) is in the desired form.

§4.5 A5 - Combinatorics

An m× n checkerboard is colored randomly: each square is independently assigned red
or black with probability 1

2 . we say that two squares, p and q, are in the same connected
monochromatic region if there is a sequence of squares, all of the same color, starting
at p and ending at q, in which successive squares in the sequence share a common side.
Show that the expected number of connected monochromatic regions is greater than mn

8 .

Proof. Construct a graph G(V,E) with |V | = mn with vertices corresponding to the
squares of the checkerboard so that adjacent vertices are connected by an edge if the
corresponding squares on the checkerboard are the same color. Note that the number of
connected components of G, C is at least |V | − |E|.

Let A be the number of 4-cycles of G(2-by-2 monochromatic squares). Note that if we
delete the bottom edge from each 4-cycle, it does not affect the number of connected
components of G and we delete an edge exactly once for each 4-cycle. It follows that
C ≥ |V | − |E|+A.

Now, note that

E(|E|) =
m(n− 1) + n(m− 1)

2
,E(A) =

(m− 1)(n− 1)

8
.
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It follows by linearity of expectation that

E(C) ≥ E(|V |)− E(|E|) + E(A)

= mn− m(n− 1) + n(m− 1)

2
+

(m− 1)(n− 1)

8

=
mn+ 3m+ 3n+ 1

8
>
mn

8
.

§4.6 A6 - Analysis

Suppose that f(x, y) is a continuous real-valued function on the unit square 0 ≤ x ≤
1, 0 ≤ y ≤ 1. Show that

∫ 1

0

(∫ 1

0
f(x, y)dx

)2

dy+

∫ 1

0

(∫ 1

0
f(x, y)dy

)2

dx ≤
(∫ 1

0

∫ 1

0
f(x, y)dxdy

)2

+

∫ 1

0

∫ 1

0
[f(x, y)]2 dxdy.

Proof. Let

I1 =

∫ 1

0

∫ 1

0
[f(x, y)]2 dxdy =

∫
[0,1]4

f(x, y)f(x, y) dxdydudv

I2 =

(∫ 1

0

∫ 1

0
f(x, y) dxdy

)2

=

∫
[0,1]4

f(x, y)f(u, v) dxdydudv

I3 =

∫ 1

0

(∫ 1

0
f(x, y) dx

)2

dy =

∫
[0,1]4

f(x, y)f(u, y) dxdydudv

I4 =

∫ 1

0

(∫ 1

0
f(x, y) dy

)2

dx =

∫
[0,1]4

f(x, y)f(x, v) dxdydudv.

We wish to show that I1 + I2 − I3 − I4 ≥ 0, which is equivalent to showing

I =

∫
[0,1]4

f(x, y) [f(x, y) + f(u, v)− f(u, y)− f(x, v)] dxdydudv.

By swapping the x↔ u, y ↔ v, we also have

I =

∫
[0,1]4

f(u, y) [f(u, y) + f(x, v)− f(x, y)− f(u, v)] dxdydudv.

I =

∫
[0,1]4

f(x, v) [f(x, v) + f(u, y)− f(u, v)− f(x, y)] dxdydudv.

I =

∫
[0,1]4

f(u, v) [f(u, v) + f(x, y)− f(x, v)− f(u, y)] dxdydudv.

Then, note that

4I =

∫
[0,1]4

(f(x, y)− f(x, v)− f(u, y) + f(u, v))2 dxdydudv ≥ 0,

which proves the result.
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§4.7 B1 - Algebra

Let P (x) = cnx
n + cn−1x

n−1 + · · ·+ c0 be a polynomial with integer coefficients. Suppose
that r is a rational number such that P (r) = 0. Show that the n numbers cnr, cnr

2 +
cn−1r, cnr

3 + cn−1r
2 + cn−1r, . . . , cnr

n + cn−1r
n−1 + · · ·+ c1r are all integers.

Proof. We can write Note that P (r)/rk = 0, so we can write

cnr
n−k . . . cn−k+1r = −(cn−k + cn−k−1r

−1 + · · ·+ r−k).

Rewriting r = p
q with gcd(p, q) = 1, we have

cnp
n−k . . . cn−k+1pq

n−k−1

qn−k
= −cn−kp

k + cn−k−1qp
k−1 + · · ·+ qk

pk
.

Since gcd(p, q) = 1 and both numerators are integers, it follows that both sides of the
equation must be integer as desired.

§4.8 B2 - Algebra

Let m and n be positive integers. Show that (m+n)!
(m+n)m+n <

m!
mm · n!

nn

Proof. Note that

(m+ n)!

m!n!
=

(
m+ n

m

)
<

(m+ n)m+n

mmnn

=
1

mmnn

m+n∑
k=0

(
m+ n

k

)
mknm+n−k

=
m+n∑
k=0

(
m+ n

k

)( n
m

)m−k
,

which is obvious.

§4.9 B3 - Algebra/Geometry

Determine all real numbers a > 0 for which there exists a nonnegative continuous function
f(x) defined on [0, a] with the property that the region R = {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤
f(x)} has perimeter k units and area k square units for some real number k.

Proof. For a > 2, we can take f(x) = 2a
a−2 so that the area and perimeter are given by

2a2

a−2 .
For a ≤ 2, we claim no such functions exist. Let f ∈ C[0, a] and let x0 = argmax[0,a] f(x).

Note that the area of the region is bounded by af(x0). For the perimeter, note that
(0, 0), (a, 0) and (x0, f(x0)) split up the boundary of R into 3 regions. The distance from
(0, 0) to (a, 0) is at least a, the distance from (0, 0) to (x0, f(x0)) is at least f(x0) and
the distance from (a, 0) to (x0, f(x0)) is at least f(x0). It follows that the perimeter is
at least

2f(x0) + a > af(x0),

using the fact that a ≤ 2. It follows that we cannot have equal perimeter and area
units.
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§4.10 B4 - Algebra/Geometry

Let n be a positive integer, n ≥ 2, and put θ = 2π
n . Define points Pk = (k, 0) in the

xy-plane, for k = 1, 2, . . . , n. Let Rk be the map that rotates the plane counterclockwise
by the angle θ about the point Pk. Let R denote the map obtained by applying in order,
R1, then R2, ..., then Rn. For an arbitrary point (x, y), find and simplify the coordinates
of R(x, y).

Proof. We claim that R(x, y) = (x+ n, y). Translate into complex numbers so that (x, y)
corresponds to x+ iy. Let θ = 2πi/n. It is easy to show by induction that

R(z) = (z − 1)eniθ − e(n−1)iθ − · · · − eiθ + n.

Note that

R(z) = (z − 1)eniθ − e(n−1)iθ − · · · − eiθ + n

= (z − 1) + eniθ − eniθ − e(n−1)iθ − · · · − eiθ + n

= (z − 1) + 1− 0 + n

= z + n.

It follows that R(x, y) = (x+ n, y), which proves the result.
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§4.11 B5 - Analysis

Evaluate limx→1−
∏∞
n=0

(
1+xn+1

1+xn

)xn
.

Proof. Let L =
∏∞
n=0

(
1+xn+1

1+xn

)xn
. Note that

logL =
∞∑
n=0

xn log(1 + xn+1)− xn log(1 + xn)

=
1

x

∞∑
n=0

xn+1 log(1 + xn+1)−
∞∑
n=0

xn log(1 + xn)

=

(
1

x
− 1

) ∞∑
n=1

xn log(1 + xn)− log 2.

Then, note that

∞∑
n=1

xn log(1 + xn) =
∞∑
n=1

∞∑
j=1

(−1)jxn(j+1)

j
.

Then, note that the sum converges absolutely since

∞∑
n=1

∞∑
j=1

xn(j+1)

j
= −

∞∑
n=1

xn log(1− xn) ≤ −
∞∑
n=1

xn log(1− x) =
x log(1− x)

x− 1
.

Hence, we can apply Fubini’s Theorem to obtain

∞∑
n=1

∞∑
j=1

(−1)jxn(j+1)

j
=
∞∑
j=1

(−1)j

j

∞∑
n=1

xn(j+1) =
∞∑
j=1

(−1)j

j

xj+1

1− xj+1
.

Then, (
1

x
− 1

) ∞∑
j=1

(−1)j

j

xj+1

1− xj+1
=

∞∑
j=1

(−1)j

j

xj(1− x)

1− xj+1
.

Note that the sum converges uniformly since xj(1−x)
1−xj+1 ≤ 1

j and
∑∞

j=1
1
j2
<∞. Therefore,

we can take limits term by term to obtain

xj(1− x)

1− xj+1
=

xj(1− x)

(1− x)(1 + x+ · · ·+ xj)
→ 1

j + 1
.

Finally, note that

∞∑
j=1

(−1)j

j(j + 1)
=
∞∑
j=1

(−1)j
(

1

j
− 1

j + 1

)

=
∞∑
j=1

(−1)j

j
+

∞∑
j=2

(−1)j

j

= 2

∞∑
j=1

(−1)j

j
− 1

= 2 log 2− 1.

It follows that logL→ log 2− 1, so we obtain L = elog 2−1 = 2/e.
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§4.12 B6 - Analysis

Let A be a nonempty set of positive integers, and let N(x) denote the number of elements
of A not exceeding x. Let B denote the set of positive integers b that can be written
in the form b = a − a′ with a ∈ A and a′ ∈ A. Let b1 < b2 < · · · be the members of
B, listed in increasing order. Show that if the sequence bi+1 − bi is unbounded, then

limx→∞
N(x)
x = 0.

Proof. Suppose limx→∞
N(x)
x > 0. Call T = {t1, . . . , tn} good if all the A+ ti = {a+ ti :

a ∈ A} are mutually pairwise disjoint. We start by proving a lemma.

Lemma 4.1

If T = {t1, . . . , tn} is good and limx→∞
N(x)
x > 0, then

|T | ≤ 1

lim supx→∞
N(x)
x

Proof. Note that

x ≥

∣∣∣∣∣
n⋃
k=1

(A+ ti) ∩ [0, x]

∣∣∣∣∣
=

n∑
k=1

|(A+ ti) ∩ [0, x]|

=

n∑
k=1

N(x− ti)

≥
n∑
k=1

(N(x)− ti)

= |T |N(x)−
n∑
k=1

ti.

After rearranging, we obtain

N(x)

x
≤

1 +
∑n

k=1
ti
x

|T |
,

which implies the desired result upon taking the limsup of both sides.

Since the size of good sets are bounded, let T∗ = {t1, . . . , tn} be a good set of maximal
size. For any t ∈ N \ T∗, we must have that T∗ ∪ {t} is not good, so there is some ti and
ai, aj such that

ai + ti = aj + t→ t− ti = ai − aj ∈ B.

In other words, for all t ∈ N \ T∗, there exists i ∈ [1, n] ∩ Z such that t − tj ∈ B.
Applying the result for t = bi+1, there is some j ∈ [1, n] ∩ Z such that bi+1 − tj = b ∈ B,
so tj = bi+1−b ≥ bi+1−bi. Since tj ≤ maxT , we have that bi+1−bi ≤ maxT is bounded,
which proves the result.
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§5 Putnam 2005

§5.1 A1 - Number Theory

Show that every positive integer is a sum of one or more numbers of the form 2r3s,
where r and s are nonnegative integers and no summand divides another. (For example,
23 = 9 + 8 + 6.)

Proof. We proceed by strong induction. Note that we can take 1 = 20 which handles the
base case. We prove the even and odd cases separately. Suppose the result is true for
n = 1, 2, . . . , 2k − 1. For n = 2k, note that we can write it as

n = 2k = 2
∑̀
i=1

2ri3si =
∑̀
i=1

2ri+13si .

If we have that 2ri3si - 2rj3sj for any i 6= j then it follows that 2ri+13si - 2rj+13sj ,
since otherwise we have 2rj+13sj = m2ri+13si which implies that 2rj3sj = m2ri3si , a
contradiction.

Now, suppose the result is true for n = 1, . . . , 2k. For n = 2k + 1, let m = blog3(n)c.
Note that we have 3m ≤ n < 3m+1. If n = 3m, then we are done. Otherwise, note that
n− 3m is even and less than n, so we can write

n = 3m + (n− 3m) = 3m +
∑̀
i=1

2ri+13si

and note that
2ri+13si ≤ n− 3m < 3m+1 − 3m = 2 · 3m,

so it follows that 3m > 2ri3si ≥ 3si , so we must have si < m which implies that
3m - 2ri+13si . It’s also clear that 2ri+13si - 3m for any i, which completes the proof.
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§5.2 A2 - Combinatorics

Let S = {(a, b)|a = 1, 2, . . . , n, b = 1, 2, 3}. A rook tour of S is a polygonal path made up
of line segments connecting points p1, p2, . . . , p3n is sequence such that

(i) pi ∈ S,
(ii) pi and pi+1 are a unit distance apart, for 1 ≤ i < 3n,
(iii) for each p ∈ S there is a unique i such that pi = p.
How many rook tours are there that begin at (1, 1) and end at (n, 1)?

Proof. We claim the number of rook tours is given by 2n−2 for n ≥ 2 and 0 for n = 1.
Let An be the set of rook tours from (1, 1) to (n, 1) and let Bn be the set of rook tours
from (1, 3) to (n, 1). It is clear that |A1| = 0.

Lemma 5.1

For n > 1,
|An| = |B1|+ · · ·+ |Bn−1|.

Proof. We prove the result by strong induction. For n = 2, it is clear that |A2| = 1 = |B1|.
Suppose the result is true for 2 ≤ n ≤ k. Note that in order to have a rook tour from

(1, 1)→ (k + 1, 1) we must first go from (1, 1)→ (`, 1) for some 1 ≤ ` ≤ k, then go from
(`, 1)→ (`, 2), and then take a path (`, 2)→ (1, 2)→ (1, 3)→ (`, 3) in order to cover all
the points in the rook tour. Finally, the number of paths from (`.3)→ (k + 1, 1) is given
by |Bk−`+1|. It follows that

|Ak+1| = |B1|+ · · ·+ |Bk|,

which proves the result.

We can similarly prove by strong induction that |Bn| = |A1|+ · · ·+ |An−1| for n > 1
and |B1| = 1. This implies that

|An| = |An−1|+ |Bn−1|, |Bn| = |An−1|+ |Bn−1|

for n > 2, which implies that |An| = 2|An−1| for n > 2. It follows that |An| = 2n−2|A2| =
2n−2 for n > 2, |A2| = 1 and |A1| = 0.
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§5.3 A3 - Algebra

Let p(z) be a polynomial of degree n, all of whose zeros have absolute value 1 in the

complex plane. Put g(z) = p(z)

zn/2 . Show that all zeros of g′(z) = 0 have absolute value 1.

Proof. Note that we can write p(z) = a
∏n
j=1(z − ωj) where |ωj | = 1 for all j. It follows

that

log g(z) = log a+

n∑
j=1

log(z − ωj)−
n

2
log z = log a+

n∑
j=1

(
log(z − ωj)−

log z

2

)
.

Taking the derivative of both sides, we obtain

g′(z)

g(z)
=

n∑
j=1

(
1

z − ωj
− 1

2z

)

=
1

2z

n∑
j=1

z + ωj
z − ωj

=
1

2z

n∑
j=1

|z|2 − 1 + ωjz − zωj
|z − ωj |2

=
1

2z

n∑
j=1

(
|z|2 − 1

|z − ωj |2
+ i

Im(ωjz)

|z − ωj |2

)
.

It follows that

Re

(
zg′(z)

g(z)

)
=
|z|2 − 1

2

n∑
j=1

1

|z − ωj |2
.

Since
∑n

j=1
1

|z−ωj |2 > 0, it follows that the real part of zg′(z)
g(z) is zero if and only if

|z|2 − 1 = 0, which implies that |z|2 = 1. It follows that all the zeros of g′(z) must either
satisfy |z|2 = 1 or g(z) = 0 which gives the desired result since the zeros of g(z) lie on
the unit circle on the complex plane.
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§5.4 B1 - Algebra

Find a nonzero polynomial P (x, y) such that P (bac, b2ac) = 0 for all real numbers a.

Proof. Take P (x, y) = (2x− y)(2x− y + 1). Let {a} = a− bac. Note that b2ac = 2 bac
when {a} < 1

2 and b2ac = 2 bac+ 1 when {a} ≥ 1
2 .

§5.5 B2 - Algebra

Find all positive integers n, k1, . . . , kn such that k1 + · · ·+ kn = 5n− 4 and

1

k1
+ · · ·+ 1

kn
= 1.

§5.6 B3 - Calculus

Find all differentiable functions f : (0,∞) 7→ (0,∞) for which there is a positive real
number a such that

f ′
(a
x

)
=

x

f(x)

for all x > 0.
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§6 Putnam 2011

§6.1 B2 - Analysis

Let a1, a2, . . . and b1, b2, . . . be sequences of positive real numbers such that a1 = b1 = 1
and bn = bn−1an − 2 for n = 2, 3, . . . . Assume that the sequence (bj) is bounded. Prove
that

S =

∞∑
n=1

1

a1 · · · an

converges, and evaluate S.

Proof. Define

Sn =
3

2

(
1−

n∏
k=1

bk
bk + 2

)
.

Note that since an = bn+2
bn−1

, we have that

2Sn = 3 +
3bn
b1 + 2

n∏
k=2

bk−1

bk + 2
= 3 +

bn
a1 . . . an

.

It follows that

2Sn − 2Sn−1 =
bn

a1 . . . an
− bn−1

a1 . . . an−1

=
bn − bn−1an
a1 . . . an

=
2

a1 . . . an
.

Therefore, Sn =
∑n

k=1
1

a1...ak
.

It is clear that (Sn) is monotone, and using the original expression for Sn, we see that
Sn is also bounded by 3/2. It follows that Sn converges by the monotone convergence
theorem.

Furthermore, note that
∏n
k=1

bk
bk+2 → 0 as n→∞, so it follows that S = limn→∞ Sn =

3
2 .
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§7 Putnam 2020

§7.1 A1 - Number Theory

How many positive integers N satisfy all of the following three conditions? (i) N is
divisible by 2020. (ii) N has at most 2020 decimal digits. (iii) The decimal digits of N
are a string of consecutive ones followed by a string of consecutive zeros.

Proof. We claim there are 508536 positive integers satisfying the claim. Note that the
integer with decimal representation given by m 1’s followed by k zeros is given by

10m − 1

9
· 10k.

Since 2020 = 22 · 5 · 101, we must have 22 · 5 | 10k and 101 | 10m−1
9 . The first condition

gives k ≥ 2 and the second condition gives

10m ≡ 1 (mod 101)⇒ 4 | m.

Finally, we need to satisfy the condition that m+ k ≤ 2020. We can write m = 4` and
k = 2 + j in order to rewrite this as

4`+ j ≤ 2018, ` ≥ 1, j ≥ 0⇒ 0 ≤ j ≤ 2018− 4`.

Since 2018 = 4(504) + 2, the number of solutions is given by

504∑
`=1

(2018− 4`+ 1) =
504∑
`=1

(2019− 4`)

= (504)(2019)− 4

504∑
`=1

`

= (504)(2019)− (504)(1010)

= (504)(1009)

= 508536.
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§7.2 A2 - Combinatorics

Let k be a nonnegative integer. Evaluate

k∑
j=0

2k−j
(
k + j

j

)
.

Proof. We claim the sum evaluates to 4k. Note that
(
n+k
j

)
=
(
n+k
k

)
so the desired

expression is given by [xk]{F (x)} where

F (x) =

k∑
j=0

2k−j(1 + x)k+j

= (2)k(1 + x)k
k∑
j=1

(
1 + x

2

)j
= 2k(1 + x)k

(
1− (1 + x)k+1/2k+1

1− x

)
=

2k+1(1 + x)k − (1 + x)2k+1

1− x
= (2k+1(1 + x)k − (1 + x)2k+1)

∑
n≥0

xn.

It follows that

[xk]{F (x)} =

k∑
n=0

(
2k+1

(
k

k − n

)
−
(

2k + 1

k − n

))

= 2k+1
k∑

n=0

(
k

n

)
−

k∑
n=0

(
2k + 1

k + 1 + n

)
= 22k+1 − 22k+1/2

= 22k

= 4k.
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§7.3 A3 - Analysis

Let a0 = π/2, and let an = sin(an−1) for n ≥ 1. Determine whether

∞∑
n=1

a2
n

converges.

Proof. We claim the series diverges. It suffices to show that an ≥ 1√
n

. We proceed by

induction. It is clear that a1 = 1 ≥ 1√
1

= 1. Suppose that ak ≥ 1√
k
. Since sinx ≥ x−x3/6

and sinx is monotonically increasing in [0, π/2], we have

ak+1 ≥ sin

(
1√
k

)
>

1√
k
− 1

6k
√
k

=
6k − 1

6k
√
k
.

It suffices to show that

6k − 1

6k
≥

√
k√

k + 1
⇔ 24k2 − 11k + 1 ≥ 0,

which is true for k ≥ 1.
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§7.4 A4 - Combinatorics

Consider a horizontal strip of N + 2 squares in which the first and the last square are
black and the remaining N squares are all white. Choose a white square uniformly at
random, choose one of its two neighbors with equal probability, and color tis neighboring
square black if it is not already black. Repeat this process until all the remaining white
squares have only black neighbors. Let w(N) be the expected number of white squares
remaining. Find

lim
N→∞

w(N)

N
.

Proof. We claim the limit is 1/e. Using a recursive argument, it is easy to show prove by
induction that

w(N) =

N−2∑
k=1

(
2w(k)

N − 1

)
+
w(N − 1)

N − 1
.

This leads to the identity

w(N + 1) = w(N) +
w(N − 1)

N − 2
.

We can solve this via generating functions - define W (z) =
∑

k≥1
w(k+1)

k zk. From the
recursive formula, we obtain

W (z) + 1 =
1− z
z

W ′(z)⇒W (z) =
e−z

1− z
− 1.

Finally, note that

w(n− 1)

n
= [zn]{W (z)} = [zn]{e−z

∑
k≥0

zk} =
n∑
k=0

(−1)k

k!

n→∞−−−→ 1

e
.
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§7.5 A5 - Combinatorics

Let an be the number of sets S of positive integers for which∑
k∈S

Fk = n,

where the Fibonacci sequence (Fk)k≥1 satisfies Fk+2 = Fk+1 + Fk and begins F1 = 1,
F2 = 1, F3 = 2, F4 = 3. Find the largest number n such that an = 2020.
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§7.6 A6 - Analysis

For a positive integer N , let fN be the function defined by

fN (x) =
N∑
n=0

N + 1/2− n
(N + 1)(2n+ 1)

sin ((2n+ 1)x) .

Determine the smallest constant M such that fN (x) ≤M for all N and all real x.

Proof. After partial fractions decomposition, we can write

fN (x) =
N∑
n=0

(
1

2n+ 1
− 1

2N + 2

)
sin((2n+1)x) =

N∑
n=0

sin((2n+ 1)x)

2n+ 1
−1− cos((2N + 2)x)

(4N + 4) sinx
.

Upon taking the derivative and simplifying, we obtain

f ′N (x) =
cosx(1− cos((2N + 2)x))

(4N + 4) sin2 x
.

Since cosx(1−cos((2N+2)x))

(4N+4) sin2 x
≥ 0, it follows that the sign of f ′N (x) is determined completely

by cosx. Namely, f ′N (x) is nonnegative on (0, π/2], zero at π/2, and nonpositive on
[π/2, π). It follows that fN (x) obtains a global maximum at π/2.

Finally, note that

fN (π/2) =

N∑
n=0

(−1)n

2n+ 1
− 1

2N + 2

N∑
n=0

(−1)n.

Since fN+2(π/2) > fN (π/2), we can find the upper bound by taking the limit as N →∞,
which gives

lim
n→∞

fN (π/2) =

∞∑
n=0

(−1)n

2n+ 1
= arctan 1 =

π

4
.
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