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Abstract

An overview of topics from math olympiads with selected problems and solutions. The
sources for handouts and expositions are provided when available. Any typos or mistakes are my
own - kindly direct them to my inbox.
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1 Combinatorics

1.1 Invariants and Monovariants

1.2 Bijections

1.3 Pigeonhole Principle

Theorem 1.1 (Pigeonhole Principle). Let m,n be positive integers with m ≥ n. If m+ 1 pigeons
fly to n pigeonholes, then at least one pigeonhole contains at least

⌊
m
n

⌋
+ 1 pigeons.

1.4 Extremal Principle

1.5 Combinatorial Games

The main strategies for analyzing combinatorial games are:

• Play the game: try to find some forced moves.

• Reduce the game to a simpler game.

• Start at the end of the game: find endgame positions which are winning and losing and work
backwards.

• Find an invariant or monovariant that a player can control.

Problem 1.2. Four heaps contain 38, 45, 61, and 70 matches respectively. Two players take turns
choosing any two of the heaps and removing a non-zero number of matches from each heap. The
player who cannot make a move loses. Which one of the players has a winning strategy?

Proof. Denote the heaps with a 4-tuple (w, x, y, z) with w ≤ x ≤ y ≤ z. We claim the winning
positions are of the form (w, x, y, z) with w < y. It is clear that (0, 0, y, z) leads to a win by removing
y and z and (0, x, y, z) leads to a win by reducing to (0, 1, 1, z) which is forced to leave either 1 or 2
heaps.

Since we remove tiles on each move, the game must terminate. If we have (w, x, y, z) with w < y,
we can reduce to (w,w,w, x) by sending y and z to w.

We show that (w,w,w, z) is a losing position. We have three cases:

1. If we remove from two of the w-heaps, we are left with (w′, w′′, w, z).

2. If we remove from a w-heap and the z-heap, we are left with either (w′, z′, w, w) or (w′, w, z′, w)
or (w′, w, w, z′).

3. If we remove any number of heaps entirely, the resulting position is clearly winning.

It follows that (w, x, y, z) with w < y is a winning position as desired.

Problem 1.3. The number 102015 is written on a blackboard. Alice and Bob play a game where
each player can do one of the following on each turn:
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• replace an integer x on the board with integers a, b > 1 so that x = ab

• erase one or both of two equal integers on the blackboard.

The player who is not able to make a move loses the game. Who has a winning strategy?

Proof. We claim Alice has a winning strategy. First, it is clear that the game must eventually
terminate. On the first turn, Alice can replace 102015 with 22015 and 52015. We claim that after any
of Bob’s turns, Alice can move the board into the state

2α12α2 . . . 2αk5α15α2 . . . 5αk .

If Bob sends 2αj to 2β1 , 2β2 , then Alice can send 5αj to 5β1 , 5β2 and vice versa. Otherwise, if
Bob removes one or two integers 2αj , 2αk , then we have αj = αj so Alice can remove one or two of
5αj , 5αk or vice versa. Since Alice can always follow the copycat strategy and the game eventually
terminates, we must have that Bob is unable to make a move at some point, which implies that
Alice wins the game as desired.

1.6 Algorithms

1.7 Generating Functions

Problem 1.4 (Putnam 2020 A2). Let k be a non-negative integer. Evaluate

k∑
j=0

2k−j
(
k + j

j

)
.

Proof. We claim the sum evaluates to 4k. Note that
(
k+j
j

)
=
(
k+j
k

)
. It follows that the sum is the

coefficient of xk in the power series
∑n

j=0 2k−j(1 + x)k+j . Evaluating this, we find

n∑
j=0

2k−j(1 + x)k+j = 2k(1 + x)k
k∑
j=0

2−j(1 + x)j

= 2k(1 + x)k
1− (1 + x)k+1/2k+1

1− (1 + x)/2

=
2k+1(1 + x)k − (1 + x)2k+1

1− x
= 2k+1(1 + x)k − (1 + x)2k+1

∑
n≥0

xn.

It follows that the coefficient of xk is given by

2k+1
k∑
j=0

(
k

j

)
−

k∑
j=0

(
2k + 1

j

)
= 22k+1 − 22k = 4k.
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Problem 1.5. (CJMO 2020/1) Let N be a positive integer, and let S be the set of all tuples with
positive integer elements and a sum of N . For all tuples t, let p(t) denote the product of all the
elements of t. Evaluate ∑

t∈S
p(t).

Proof. We claim the sum evaluates to F2N , where Fk denotes the k-th Fibonacci number. Note that

the sum can be represented as the coefficient of xN in
∑N

k=1

(∑
n≥0 nx

n
)k

. Evaluating this, we find

N∑
k=1

∑
n≥0

nxn

k

=
N∑
k=1

(
x

(1− x)2

)k

=
N∑
k=1

xk

(1− x)2k

=

N∑
k=1

∑
j≥0

(
2k − 1 + j

2k − 1

)
xj+k.

The coefficient of xN is given by

N∑
k=1

(
N + k − 1

2k − 1

)
=

N∑
k=1

(
N + k − 1

N − k

)
=
∑
j≥0

(
2N − 1− j

j

)
= F2N .

Problem 1.6 (IMO 1995/6). Let p be an odd prime number. How many p-element subsets A of
{1, 2, . . . , 2p} are there, the sum of whose elements is divisible by p?

Proof. Define f(x, y) =
∏2p
k=1(1 + xky). We wish to find the sum of the coefficients of terms of the

form xp`yp. We do this by first considering f as a generating function in x using the root of unity

filter associated to ω = e
2πi
p . Then, we read off the coefficient of yp to find the desired expression.

Note that for 1 ≤ k ≤ p− 1,

f(ωk, y) =

2p∏
k=1

(1 + ωky) =

p∏
k=1

(1 + ωky)2 = (1 + yp)2.

It follows that

1

p

p−1∑
i=0

f(ωk, y) =
1

p

(
(1 + y)2p +

p−1∑
i=1

f(ωk, y)

)

=
(1 + y)2p + (p− 1)(1 + yp)2

p
.

Finally, the coefficient of yp is given by (
2p
p

)
+ 2(p− 1)

2
.
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1.8 Enumerative Combinatorics

1.9 Probabilistic Method

Some tips for using the probabilistic method:

• A statement E can be true by showing that its probability is greater than 0. item Show that
E is true is the same as showing P (¬E) < 1.

• Show that X can be at least or at most a by showing E[X] ≥ a or E[X] ≤ a respectively.

• Show that it is possible for |X| to be at least or at most a > 0 by showing E[X] = 0 and
Var(X) ≥ a2 or Var(X) ≤ a2 respectively.

1.10 Algebraic Combinatorics

1.11 Combinatorial Geometry

1.11.1 Convex Hull

Problem 1.7 (Happy-Ending Problem). Suppose we have five points in the plane with no three
collinear. Show that we can find four points whose convex hull is a quadrilateral.

Proof. Take the convex hull of the five points. If it is a quadrilateral or pentagon, we are done(choose
any 4 points in the latter case). Suppose the convex hull is a triangle. Label the points with A
through E and without loss of generality, let the points A, B, C form the triangle and D, E, be the
points inside the hull.

Extend the line DE. Note that two points must lie on one side of the line - if not then we have
three collinear points. It is easy to show that these four points form a convex quadrilateral.

Problem 1.8. There are n > 3 coplanar points, no three collinear and every four of them are the
vertices of a convex quadrilateral. Prove that the n points are the vertices of a convex n-sided
polygon.

Proof. Suppose that some point P is inside the convex hull of the n points. Let Q be some vertex
of the convex hull. The diagonals from Q to the other vertices divide the convex hull into triangles
and since no three points are collinear, P must lie inside some triangle 4QRS. But this is a
contradiction since P,Q,R, S do not form a convex quadrilateral.

Problem 1.9 (1985 IMO Longlist). Let A,B be finite disjoint sets of points in the plane such
that any three distinct points in A ∪B are not collinear. Assume that at least one of the sets A,B
contains at least five points. Show that there exists a triangle all of whose vertices are contained in
A or in B that does not contain in its interior any point from the other set.

Proof. Suppose A has at least five points. Take A1A2 on the boundary of the convex hull of A. For
any other Ai ∈ A, define θi = ∠A1A2Ai. Without loss of generality, θ3 < θ4 < · · · < 180◦. It follows
that conv({A1, A2, A3, A4, A5}) contains no other points of A.
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Problem 1.10 (Putnam 2001 B6). Assume that (an)n≥1 is an increasing sequence of positive real
numbers such that lim an

n = 0. Must there exist infinitely many positive integers n such that

an−i + an+i < 2an

for i = 1, . . . , n− 1?

Proof. We claim such a subsequence exists. Let A = conv{(n, an) : n ∈ N} and let ∂A denote the
set of points on the boundary of the convex hull.

We claim that ∂A contains infinitely many elements. Suppose not. Then, ∂A has a last point
(N, aN ). If we let m = supn>N

an−aN
n−N , the slope of the line between (N, aN ) and (n, an), then the

line through (N, aN ) with slope m lies above(or contains) each point (n, an) for n > N . However,
since an/n→ 0 and aN , N are fixed, we have that

an − aN
n−N

→ 0.

This implies that the set of slopes attains a maximum, i. e. there is some point (M,aM ) with
M > N so that m = aM−aN

M−N . But then, we must also have that (M,aM ) ∈ ∂A, contradicting the
fact that (N, aN ) is the last point in ∂A.

For each point on the boundary (n, an) ∈ ∂A, we must have that midpoint of the line through
(n − i, an−i) and (n + i, an+i) for i ∈ [n − 1] must lie below (n, an). From this, it follows that
an >

an−i+an+i
2 , which implies the result.
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2 Algebra

2.1 Polynomials

Problem 2.1 (Putnam 2005/A3). Let p(z) be a polynomial of degree n, all of whose zeros have

absolute value 1 in the complex plane. Put g(z) = p(z)

zn/2
. Show that all zeros of g′(z) = 0 have

absolute value 1.

Proof. Note that we can write p(z) = a
∏n
j=1(z − ωj) where |ωj | = 1 for all j. It follows that

log g(z) = log a+

n∑
j=1

log(z − ωj)−
n

2
log z = log a+

n∑
j=1

(
log(z − ωj)−

log z

2

)
.

Taking the derivative of both sides, we obtain

g′(z)

g(z)
=

n∑
j=1

(
1

z − ωj
− 1

2z

)

=
1

2z

n∑
j=1

z + ωj
z − ωj

=
1

2z

n∑
j=1

|z|2 − 1 + ωj z̄ − zω̄j
|z − ωj |2

=
1

2z

n∑
j=1

(
|z|2 − 1

|z − ωj |2
+ i

Im(ωj z̄)

|z − ωj |2

)
.

It follows that

Re

(
zg′(z)

g(z)

)
=
|z|2 − 1

2

n∑
j=1

1

|z − ωj |2
.

Since
∑n

j=1
1

|z−ωj |2 > 0, it follows that the real part of zg′(z)
g(z) is zero if and only if |z|2− 1 = 0, which

implies that |z|2 = 1. It follows that all the zeros of g′(z) must either satisfy |z|2 = 1 or g(z) = 0
which gives the desired result since the zeros of g(z) lie on the unit circle on the complex plane.

2.2 Inequalities

Theorem 2.2 (QM-AM-GM-HM). Let x1, . . . , xn ∈ R+. Then,√
x2

1 + · · ·+ x2
n

n
≥ x1 + · · ·+ xn

n
≥ n
√
x1 · · ·xn ≥

n
1
x1

+ · · ·+ 1
xn

with equality if and only if x1 = · · · = xn.

Definition 2.3 (Power Mean). Given p ∈ R, x1, . . . , xn ∈ R+, define

Mp(x1, . . . , xn) =

{
(
∑n

i=1wix
p
i )

1/p
if p 6= 0∏n

i=1 x
wi
i else

.
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Definition 2.4 (Weighted Power Mean). Given (wi)
n
i=1 with

∑
iwi = 1, define

Mw
p (x1, . . . , xn) =

{
(
∑n

i=1wix
p
i )

1/p
if p 6= 0∏n

i=1 x
wi
i else

.

Theorem 2.5. Given x1, . . . , xn ∈ R+, the following properties hold:

• min(x1, . . . , xn) ≤Mp(x1, . . . , xn) ≤Mp(x1, . . . , xn) ≤ max(x1, . . . , xn)

• Mp(x1, . . . , xn) = Mp(σ(x1, . . . , xn)) for σ ∈ Sn

• Mp(bx1, . . . , bxn) = bMp(x1, . . . , xn)

• Mp(x1, . . . , xnk) = Mp(Mp(x1, . . . , xn),Mp(xk+1, . . . , x2k), . . . ,Mp(x(n−1)k+1, . . . , xnk))

Theorem 2.6 (Power Mean Inequality). If p < q,

Mp(x1, . . . , xn) ≤Mq(x1, . . . , xn),

with equality if and only if x1 = · · · = xn.

2.3 Functional Equations

2.4 Linear Algebra

Problem 2.7. Let A ∈Mn(R) be skew-symmetric. Show that det(A) ≥ 0.

Proof. If n is odd, note that

det(A) = det(Aᵀ) = det(−A) = (−1)n det(A) = −det(A).

It follows that det(A) = 0.

Otherwise, suppose n is even and let p(λ) = det(A− Inλ). If λ 6= 0 is an eigenvalue, note that
p(λ) = 0 by the Cayley-Hamilton Theorem. Moreover,

p(−λ) = det(A+ Inλ) = det(Aᵀ + Iᵀnλ) = det(−A+ Inλ) = 0.

Moreover, let v be an eigenvector with corresponding eigenvalue λ. Note that

〈Av, v〉 = λ〈v, v〉 = λ‖v‖2,

〈Av, v〉 = 〈v,Aᵀv〉 = 〈v,−Av〉 = −λ̄〈v, v〉 = −λ̄‖v‖2.

It follows that λ = −λ̄, which implies that λ = ri for r ∈ R. Hence,

det(A) =

n/2∏
j=1

(iλj)(−iλj) =

n∏
j=1

λ2
j ≥ 0.
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Problem 2.8. Let A ∈Mn(R) with A3 = A+ In. Show that det(A) > 0.

Proof. Let p(x) = x3 − x− 1. Note that p(0) = −1, p(2) = 5, so the polynomial has a root in the
interval (0, 2) by the intermediate value theorem. Furthermore, p′(x) = 3x2 − 1 so the polynomial
has critical points at ± 1√

3
. It is easy to see that at both of these values, p(x) < 0 so it follows that

the other roots of p(x) are conjugate complex numbers. Let the roots be λ1, λ2, λ3 with λ1 being
the positive real root and λ2, λ3 the conjugate complex ones. If A satisfies A3 = A+ In, then we
must have the eigenvalues of A are λ1, λ2 and λ3, with multiplicity α1, α2, α3 respectively. Since
λ2, λ3 are complex conjugates, we must have α2 = α3, so it follows that

det(A) = λα1
1 (λ2λ3)α2 = λα1

1 |λ2|α2 > 0.

Problem 2.9. If A,B ∈Mn(R) such that AB = BA, then det(A2 +B2) ≥ 0.

Proof.

det(A2 +B2) = det(A+ iB) det(A− iB) = det(A+ iB)det(A+ iB) = | det(A+ iB)|2 ≥ 0.

Problem 2.10. Let A,B ∈ M2(R) such that AB = BA and det(A2 + B2) = 0. Show that
det(A) = det(B).

Proof. Let pA,B(λ) = det(A+λB) = det(B)λ2 + (trA+ trB− tr(AB))λ+ det(A). By Problem 1.3,
we have det(A+ iB) and det(A− iB) = 0, which implies that pA,B(λ) = c(λ− i)(λ+ i) = c(λ2 + 1).
It follows that c = detB = detA.

Problem 2.11. Let A ∈M2(R) with detA = −1. Show that det(A2 + I2) ≥ 4. When does equality
hold?

Proof. First, note the identity

det(X + Y ) + det(X − Y ) = 2(detX + detY ).

This follows from writing p(z) = det(X + zY ) = det(Y )z2 + (trX + trY − tr(XY ))z + det(X) and
taking

p(1) + p(−1) = det(X + Y ) + det(X − Y ) = 2 detY + 2 detX.

Then, taking X = A2 + I and Y = 2A, we have

0 ≤ det(A+ I)2 + det(A− I)2 = 2(det(A2 + I) + det(2A)) = 2(det(A2 + I)− 4).

It follows that det(A2 + I) ≥ 4 as desired. We have equality when the eigenvalues of A are 1 and
−1.

Problem 2.12. Let A,B ∈M3(C) with det(A) = det(B) = 1. Show that det(A+
√

2B) 6= 0.

10
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2.5 Group Theory

Theorem 2.13 (Lagrange’s Theorem). Let G be a finite field. If H is a subgroup of G, then
|G| = [G : H]|H|.

Theorem 2.14 (Chinese Remainder Theorem for Groups). If gcd(m,n) = 1, then Zn×Zm ≡ Zmn.

Theorem 2.15 (Fundamental Theorem of Cyclic Groups). Every subgroup of a cyclic group is
cyclic. Moreover, if |〈a〉| = n, then the order of any subgroup of 〈a〉 is a divisor of n; and, for each
positive integer divisor k or n, the group 〈a〉 has exactly one subgroup of order k, namely 〈an/k〉.

Theorem 2.16 (Fundamental Theorem of Finitely Generated Abelian Groups). If G is a finitely
generated abelian group, there exists a unique integer m and unique pe11 , p

e2
2 , . . . , p

en
n such that

G ≡ Zpe11 × · · · × Zpenn × Zm.

Problem 2.17 (Putnam 2009/A5). Is there a finite abelian group G such that the product of the
orders of all its elements is 22009.

Proof. Suppose such a group G existed. By FTFGAG, G is a product of finite cyclic groups. By
Lagrange’s theorem, the generators of the groups must have order that is a power of 2. Hence, it
suffices to consider G of the form

G ≡
∞∏
k=1

(Z2k)nk ,

where all but finitely many of the nk’s are zero.

Let dk denote the number of elements of G with order at most 2k. Note that d0 = 1 since G has
a unique identity element. Then

d1 =
∞∏
k=1

2nk = 2
∑∞
k=1 nk .

since for each Z2k , there are exactly two elements of order 1 or 2. Similarly,

d2 = 2n14
∑∞
k=2 nk .

It is easy to prove by induction that d1 | dk for all k > 0 and d1 is a power of 2.

Then, note that if we let N denote the product of the orders of the elements of G, we have

N = 1d02d1−d04d2−d1 · · · =
∞∏
k=0

(2k)dk+1−dk .

Then,

log2N =
∞∑
k=1

k(dk+1 − dk).

If we would like 2009 = log2N , note that we have

2010 = d1 +

∞∑
k=2

k(dk+1 − dk),

11
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and the right hand side divides d1 which is a power of 2. However, 2010 = 2 · 1005, so it follows
that d1 = 2. Hence,

1 = log2 d1 =

∞∑
k=0

d1.

It follows that G ≡ Z2k for some k. This has 1 element of order 1 and 2k−1 elements of order 2j ,
so it follows that

log2N =

k∑
j=1

j(2j−1) = 2k(k − 1) + 1.

If 2009 = log2N , then
2k(k − 1) = 2008 = 23 · 251.

This is a contradiction since k ≤ 3, but 8(3− 1) = 16 < 2008.

2.6 Field Theory

12
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3 Number Theory

3.1 Orders

3.2 P-adic Valuation

Definition 3.1. Let p be a prime and let n be a non-zero integer. We define νp(n) to be the
exponent of p in the prime factorization of n.

Some properties which can be easily verified:

• νp(a+ b) ≥ min{νp(a), νp(b)}

• νp(ab) = νp(a) + νp(b)

• vp(gcd(a1, . . . , an)) = min{νp(a1), . . . , νp(an)}

• vp(lcm(a1, . . . , an)) = max{νp(a1), . . . , νp(an)}

Theorem 3.2 (Legendre’s Theorem).

νp(n!) =
∑
k≥1

⌊
n

pk

⌋
=
n− sp(n)

p− 1
,

where sp(n) denotes the sum of the digits when written in base p.

Problem 3.3 (Putnam 2003/B3). Show that for each positive integer n,

n! =
n∏
i=1

lcm {1, 2, . . . ,
⌊n
i

⌋
}

(Here lcm denotes the least common multiple, and bxc denotes the greatest integer ≤ x.)

Proof. Note that

νp

(
n∏
k=1

lcm{1, 2, . . . , bn/kc}

)
=

n∑
k=1

νp (lcm{1, 2, . . . , bn/kc})

=
n∑
k=1

⌊
logp bn/kc

⌋
=

n∑
k=1

∑
`:bn/kc≥p`

1

=
∞∑
`=1

⌊
n/p`

⌋
.

This is exactly νp(n!) by Legendre’s Theorem.

13
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Problem 3.4. Prove that for any positive integer n, n! is a divisor of

n−1∏
k=0

(2n − 2k).

Proof. It suffices to show that for each prime p ≤ n, νp(n!) ≤ νp
(∏n−1

k=0(2n − 2k)
)

=
∑n−1

k=0 νp(2
n −

2k).

For p = 2,
ν2(n!) = n− s2(n) ≤ n− 1,

n−1∑
k=0

νp(2
n − 2k) ≥ n− 1,

since 2n−2k is even for k ≥ 1. For p > 2, note that 2p−1−1 ≡ 0 (mod p) by Fermat’s little theorem,
which implies that p | 2k(p−1) − 1 for all k ≥ 1. Then

n−1∏
k=0

(2n − 2k) = 2n(n−1)/2
n∏
k=1

(2k − 1),

and p - 2n(n−1)/2, which implies that

νp

(
n−1∏
k=0

(2n − 2k)

)
=

n∑
k=1

νp(2
k − 1)

≥
∑

1≤k(p−1)≤n

νp(2
k(p−1) − 1)

≥
∑

1≤k(p−1)≤n

1

=

⌊
n

p− 1

⌋
.

But note that

νp(n!) =
n− sp(n)

p− 1
≤ n− 1

p− 1
≤
⌊

n

p− 1

⌋
≤ νp

(
n−1∏
k=0

(2n − 2k)

)
.

Theorem 3.5 (Lifting-the-Exponent(LTE) Lemma). Let p be prime, x, y ∈ Z, n ∈ N and p | (x−y),
p - x, p - y.

• if p is odd, νp(x
n − yn) = νp(x− y) + νp(n),

• for p = 2 and even n, ν2(xn − yn) = ν2(x− y) + ν2(n) + ν2(x+ y)− 1.

14
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3.3 Cyclotomic Polynomials

3.4 Finite Field Arithmetic

Refer to Evan Chen, Summations.

Theorem 3.6 (Fermat’s Little Theorem). Let p be a prime. Then ap−1 ≡ 1 (mod p) whenever
gcd(p, q) = 1.

Theorem 3.7 (Lagrange’s Theorem). If p is prime and f(x) ∈ Z[x], then either

• every coefficient of f(x) is divisible by p, or

• f(x) ≡ 0 (mod p) has at most deg(f) incongruent solutions.

Theorem 3.8 (Wilson’s Theorem). For any prime p,

(p− 1)! ≡ −1.

Proof. Let g(x) = (x−1)(x−2) . . . (x− (p−1)) and h(x) = xp−1−1. Both polynomials have degree
p− 1 and leading term xp−1. The constant term for g(x) is (p− 1)!. By Fermat’s little theorem,
h(x) has roots 1, 2, . . . , p− 1 in Fp.

Now, consider f(x) = g(x) − h(x). Note that deg(f) ≤ p − 2 since the leading terms cancel.
In Fp, it also has the same roots 1, 2, . . . , p− 1. By Lagrange’s Theorem(3.2), we must have that
f(x) ≡ 0 (mod p). It follows that f(0) = (p− 1)! + 1 ≡ 0 (mod p) which proves the result.

Theorem 3.9 (Sums of Powers). Let p be a prime and n and integer. Then,

p−1∑
k=1

km ≡

{
0 (mod p) if p− 1 - m
−1 (mod p) if p− 1 | m

Proof. If p− 1 | m, then (p− 1)` = m for some `, so it follows that

∑
k = 1p−1km ≡

p−1∑
k=1

(kp−1)` ≡
p−1∑
k=1

1 ≡ p− 1 ≡ −1 (mod p).

Otherwise, if we let g be a generator for (Z/pZ)×, we have

p−1∑
k=1

km ≡
p−2∑
k=0

gkm ≡ g(p−1)m − 1

gm − 1
≡ 0 (mod p)

since gm − 1 6≡ 0 (mod p) .

Theorem 3.10 (Wolstenholme’s Theorem). Let p > 3 be prime. THen

(p− 1)!

(
1

1
+ · · ·+ 1

p− 1

)
≡ 0 (mod p2).

15
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Theorem 3.11 (Harmonic modulo p). For any integer k = 1, 2, . . . , p− 1, we have

1

k
≡ (−1)k−1 1

p

(
p

k

)
(mod p).

Problem 3.12 (ELMO 2009). Let p be an odd prime and x be an integer such that p | x3 − 1 but
p - x− 1. Prove that p divides

(p− 1)!

(
x− x2

2
+
x3

3
− · · · − xp−1

p− 1

)
.

Proof. Note that p | x3−1 and x - x−1 implies that p | x2 +x+ 1, so we have 1 +x ≡ −x2 (mod p).
Using Theorem 3.6, we can rewrite the expression as

x− x2

2
+
x3

3
− · · · − xp−1

p− 1
≡ x

p

(
p

1

)
+
x2

p

(
p

2

)
+ · · ·+ xp−1

p

(
p

p− 1

)
(mod p)

=
1

p
((1 + x)p − 1− xp) (mod p)

= −1

p

(
1 + xp + x2p

)
.

Note that x2p + xp + 1 ≡ (x2 + x)p + 1 (mod p). By the Lifting-The-Exponent(LTE) lemma,

νp((x
2 + x)p + 1p) = νp(x

2 + x+ 1) + νp(p) ≥ 2.

It follows that 1 + xp + x2p ≡ 0 (mod p2), which proves the result.

3.5 Arithmetic Functions

Definition 3.13. A function f : N → C is multiplicative if f(mn) = f(m)f(n) whenever
gcd(m,n) = 1. It is completely multiplicative if f(mn) = f(m)f(n) for any m,n ∈ N.

Definition 3.14 (Möbius Function). The Möbius Function, µ, is defined by

µ(n) =

{
(−1)m if n has m distinct prime factors,

0 if n is not squarefree.

Definition 3.15 (Dirichlet Convolution). Given two arithmetic functions, f, g : N→ C, we define

(f ∗ g)(n) =
∑
d|n

f(d)g(n/d) =
∑
de=n

f(d)g(e).

Theorem 3.16 (Möbius Inversion). Given two arithmetic functions f, g : N→ C,

g(n) =
∑
d|n

f(d)⇐⇒ f(n) =
∑
d|n

µ(d)g(n/d).

In other words, g = f ∗ 1 if and only if f = g ∗ µ.

16
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Problem 3.17 (Bulgaria 1989). Let Ω(n) denote the number of prime factors of n, counted with
multiplicity. Evaluate

1989∑
n=1

(−1)Ω(n)

⌊
1989

n

⌋
.

Proof. Note that g(n) = −1Ω(n) is (completely) multiplicative. Then,

1989∑
n=1

(−1)Ω(n)

⌊
1989

n

⌋
=

1989∑
n=1

∑
k≤1989,n|k

(−1)Ω(n)

=

1989∑
k=1

∑
n|k

(−1)Ω(n).

Note that g ∗ 1 is multiplicative so it suffices to evaluate (g ∗ 1)(k) =
∑

n|k(−1)Ω(n) for prime powers.
Note that

(g ∗ 1)(pk) =

k∑
r=0

(−1)r =

{
1 if k is even

0 else
.

It follows that (g ∗ 1)(n) = 1 when n is a perfect square and is 0 otherwise. Hence, the sum
evaluates to

⌊√
1989

⌋
= 44.

3.6 Quadratic Reciprocity

Definition 3.18 (Legendre Symbol). For a prime p and integer a, set

(
a

p

)
=


0 p | a
1 a 6≡ 0 is a quadratic residue

−1 a 6≡ 0 is not a quadratic residue

.

Definition 3.19 (Legendre’s Definition). For odd primes p,(
a

p

)
≡ a

p−1
2 (mod p).

Definition 3.20 (Jacobi Symbol). For any integer a and any odd positive integer n = pe11 . . . penn ,(a
n

)
=

(
a

p1

)e1
. . .

(
a

pn

)en
Some properties of the Jacobi Symbol:

•
(
a
n

)
=
(
b
n

)
when a ≡ b (mod n)

•
(
a
n

)
= 0 if and only if gcd(a, n) > 1

•
(
a
2

)
∈ {0, 1}.

17
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Theorem 3.21 (Quadratic Reciprocity). Let m,n be relatively prime positive odd integers. Then(
−1

n

)
= (−1)

n−1
2 ,

(
2

n

)
= (−1)

n2−1
8 ,

and (m
n

)( n
m

)
= (−1)

(m−1)(n−1)
4

or equivalently (m
n

)
=
( n
m

)
(−1)(m−1)(n−1)/4.

Problem 3.22. Is 481 a quadratic residue modulo 2017?

Proof. (
481

2017

)
=

(
2017

481

)
=

(
93

481

)
=

(
481

93

)
=

(
16

93

)
= 1.

Problem 3.23. Show that 2n + 1 has no prime factors of the form p = 8k + 7.

Proof. Suppose p | 2n + 1. If n is even, then 22k ≡ −1 (mod p) so p ≡ 1 (mod 4). Otherwise, we
have 22k+1 ≡ −1 (mod p) which implies that −2 ≡ 22(k+1) (mod p) so −2 is a quadratic residue
modulo p. Then

1 =

(
−2

p

)
= (−1)

p−1
2

+ p2−1
8 = (−1)

p2+4p−5
8 = (−1)

(p+5)(p−1)
8 .

If p = 8k+ 7, then 4 - p−1 = 8k+ 6 and 8 - p+ 5 = 8k+ 12, so we cannot have 16 | (p+ 5)(p−1),
a contradiction.
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4 Analysis

4.1 Sequences and Series

Problem 4.1 (Putnam 2020/A3). Let a0 = π/2, and let an = sin(an−1) for n ≥ 1. Determine
whether

∞∑
n=1

a2
n

converges.

Proof. We claim the series diverges. It suffices to show that an ≥ 1√
n

. We proceed by induction.

It is clear that a1 = 1 ≥ 1√
1

= 1. Suppose that ak ≥ 1√
k
. Since sinx ≥ x − x3/6 and sinx is

monotonically increasing in [0, π/2], we have

ak+1 ≥ sin

(
1√
k

)
>

1√
k
− 1

6k
√
k

=
6k − 1

6k
√
k
.

It suffices to show that
6k − 1

6k
≥

√
k√

k + 1
⇔ 24k2 − 11k + 1 ≥ 0,

which is true for k ≥ 1.

4.2 Measure Theory and Integration

Problem 4.2 (Putnam 2002/A6). Fix an integer b ≥ 2. Let f(1) = 1, f(2) = 2, and for each n ≥ 3,
define f(n) = nf(d), where d is the number of base-b digits of n. For which values of b does the
sum

∑
n≥1 1/f(n) converge?

Proof. The sum converges for b = 2 and diverges for b ≥ 3.

We first consider b ≥ 3. Suppose the sum converges. Note that we can write

∞∑
n=1

1

f(n)
=

∞∑
d=1

1

f(d)

bd−1∑
n=bd−1

1

n
.

Note that
∑bd−1

n=bd−1
1
n is a left-endpoint Riemann approximation for the integral

∫ bd
bd−1

1
x and the

function 1
x is monotonically decreasing on this interval so it follows that

bd−1∑
n=bd−1

1

n
>

∫ bd

bd−1

1

x
= log b.

However, this implies that
∞∑
n=1

1

f(n)
> log b

∞∑
d=1

1

f(d)
,

which is a contradiction since log b > 1.
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Now, we show that the sum converges in the case of b = 2. Let C = log 2 + 1
8 < 1. We prove by

induction that for each m ∈ N,

2m−1∑
n=1

1

f(m)
< 1 +

1

2
+

1

6(1− C)
= L.

For m = 1, 2, the result is clear. Suppose it is true for all m ∈ {1, 2, . . . , N − 1}. Note that

2N−1∑
n=1

1

f(n)
= 1 +

1

2
+

1

6
+

N∑
d=3

1

f(d)

2d−1∑
n=2d−1

1

n
.

Then, using a right-endpoint Riemann approximation, we have

2d−1∑
n=2d−1

1

n
=

1

2d−1
− 1

2d
+

2d∑
n=2d−1+1

1

n

< 2−d +

∫ 2d

2d−1

dx

x

<
1

8
+ log 2 = C.

It follows that

1 +
1

2
+

1

6
+

N∑
d=3

1

f(d)
< 1 +

1

2
+

1

6
+ C

N∑
d=3

1

f(d)
(1)

< 1 +
1

2
+

1

6
+

C

6(1− C)
(2)

= 1 +
1

2
+

1

6(1− C)
= L, (3)

where we used the strong induction hypothesis to obtain (2).

Problem 4.3 (Putnam 2003/B6). Let f(x) be a continuous real-valued function defined on [0, 1].
Show that ∫ 1

0

∫ 1

0
|f(x) + f(y)| dxdy ≥

∫ 1

0
|f(x)| dx.

Proof. Let f+ = max(f(x), 0) and f− = f+ − f . Let A = supp f+, B = supp f−. We will denote
‖g‖ =

∫ 1
0 |g(x)| dx.

Note that∫ 1

0

∫ 1

0
|f(x) + f(y)| dxdy =

(∫∫
A×A

+

∫∫
B×B

+2

∫∫
A×B

)
|f(x) + f(y)| dxdy.

Note that ∫∫
A×A
|f(x) + f(y)| dxdy =

∫∫
A×A

(f(x) + f(y)) dxdy

=

∫∫
A×A

f(x) dxdy +

∫∫
A×A

f(y) dxdy

= 2|A|‖f+‖.
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Similarly,
∫∫
B×B |f(x) + f(y)| dxdy = 2|B|‖f−‖.

Finally, note that∫∫
A×B

|f(x) + f(y)| dxdy =

∫∫
A×B

|f+(x)− f−(y)| dxdy

≥
∣∣∣∣∫∫

A×B
(f+(x)− f−(y)) dxdy

∣∣∣∣
= ||B|‖f+‖ − |A|‖f−‖|.

Combining the results, we have that∫ 1

0

∫ 1

0
|f(x) + f(y)| dxdy ≥ 2|A|‖f+‖+ 2|B|‖f−‖+ 2||B|‖f+‖ − |A|‖f−‖|.

Squaring both sides of the expression, we have that(∫ 1

0

∫ 1

0
|f(x) + f(y)| dxdy

)2

≥
(
2|A|‖f+‖+ 2|B|‖f−‖+ 2||B|‖f+‖ − |A|‖f−‖|

)2
= 4(|A|‖f+‖+ |B|‖f−‖+ ||B|‖f+‖ − |A|‖f−‖|)2

= 4(|A|‖f+‖+ |B|‖f−‖)2 + 4(|B|‖f+‖ − |A|‖f−‖)2 + 8(|A|‖f+‖+ |B|‖f−‖)||B|‖f+‖ − |A|‖f−‖|
≥ 4(|A|2‖f+‖2 + |B|2‖f−‖2 + |A|2‖f−‖2 + |B|2‖f+‖2)

≥ 4(|A|2 + |B|2)(‖f+‖2 + ‖f−‖2)

≥ (|A|+ |B|)2(‖f+‖+ ‖f−‖)2

= (1)2(‖f‖)2

=

(∫ 1

0
|f(x)| dx

)2

.

4.3 Vector Calculus

4.4 Complex Analysis
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5 Geometry

5.1 Classical Results

Theorem 5.1 (Incenter-Excenter Lemma).

Theorem 5.2 (Euler’s Theorem). Let ABC be a triangle. Let R and r denote its circumradius and
inradius, respectively. Let O and I denote the circumcenter and incenter. then OI2 = R(R− 2r).
In particular, R ≥ 2r.

5.2 Complex Numbers

Theorem 5.3 (Complex Special Points). Let (ABC) be the unit circle. We have

• the circumcenter, o = 0.

• the orthocenter, h = a+ b+ c.

• the centroid, g = a+b+c
3 .

• the nine-point center, n9 = a+b+c
2 .

Theorem 5.4 (Complex Incenter). Given ABC on the unit circle, it is possible to pick u, v, w such
that

• a = u2, b = v2, c = w2,

• the midpoint of B̂C is −vw, the midpoint of ĈA is −wu and the midpoint of âb is −uv,

• the incenter I = −(uv − vw − wu).

Theorem 5.5 (Complex Foot). If a 6= b are on the unit circle and z ∈ C, then the foot from Z to
AB is given by

a+ b+ z − abz̄
2

Theorem 5.6 (Complex Shoelace). If a, b, c ∈ C, the signed area of 4ABC is given by

i

4

∣∣∣∣∣∣
a ā 1
b b̄ 1
c c̄ 1

∣∣∣∣∣∣ .
Theorem 5.7 (Concyclic Complex Numbers). Let a, b, c, d be distinct complex numbers, not all
collinear. Then A,B,C,D are concyclic if and only if

b− a
c− a

÷ b− d
c− d

∈ R.

Problem 5.8 (Putnam 2003/B5). Let A, B and C be equidistant points on the circumference of a
circle of unit radius centered at O, and let P be any point in the circle’s interior. Let a, b, c be the
distances from P to A, B, C respectively. Show that there is a triangle with side lengths a, b, c,
and that the area of this triangle depends only on the distance from P to O.
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Proof. Let ω = e2πi/3, A = 1, B = ω, C = ω2, P = z ∈ C with |z| < 1. We have

a = |z − 1|, b = |z − ω|, c = |z − ω2|.

Note that

(z − 1) + ω(z − ω) + ω2(z − ω2) = z(1 + ω + ω2)− (1 + ω2 + ω4) = 0.

The corresponding triangle, where we visualize the complex numbers as vectors that are sides of the
triangle, has side lengths of a, b, c as desired.

The area of the triangle is given by

|(z − 1) ¯ω(z − ω)− ¯z − 1ω(z − ω)|/4 = |(z − 1)(ω2z̄ − ω)− (z̄ − 1)(ωz − ω2)|/4
= |zz̄ω2 − ω2z̄ − zω + ω − zz̄ω + ωz + z̄ω2 − ω2|/4
= |(zz̄ − 1)(ω2 − ω)|/4

=
(1− |z|2)

√
3

4
,

which is a function of z, as desired.

Problem 5.9. Let H be the orthocenter of 4ABC. Let X be the reflection of H over BC and Y
the reflection over the midpoint of BC. Prove that X and Y lie on (ABC), and AY is a diameter.

Proof. Let A = a,B = b, C = c be the complex number representation and without loss of generality,
suppose that (ABC) is the unit circle. Note that the orthocenter is given by h = a+ b+ c. Then,

x = b+ (c− b)
(
h− b
c− b

)
= b+ (c− b)

(
1
a + 1

b + 1
c −

1
b

1
c −

1
b

)

= b− bc
(
a+ c

ac

)
= b(1− 1− c

a
)

= −bc
a
∈ (ABC).

Next, if we let m = b+c
2 , note that we have

y −m = −(h−m)⇒ y = 2m− h = −a ∈ (ABC).

Furthermore, since y = −a, we have that AY is a diameter of (ABC).
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Sources:

1. Arthur Engel, Problem Solving Strategies

2. Evan Chen, Expected Uses of Probability

3. Evan Chen, Summation

4. Evan Chen, Euclidean Geometry in Mathematical Olympiads

5. Espen Slettnes, Probabilistic Method
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