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Abstract

Notes and selected solutions from Wilf, generatingfunctionology(third edition). I will generally
leave out tedious computations but will refer to the text whenever possible. I have also included
problems from various math olympiads.
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Vishal Raman 1 Introductory Ideas and Examples

1 Introductory Ideas and Examples

As a motivating example, take the Fibonacci numbers F0, F1, . . . with the recurrence relation
Fn+1 = Fn + Fn−1 for n ≥ 0, with F0 = 0, F1 = 1. There are exact formulas for Fn, but another
useful representation is as follows: the n-th Fibonacci number Fn, is the coefficient of xn in the
expansion of

F (x) =
x

1− x− x2

as a power series about the origin.

Generating functions are typically used for the following:

• Finding an exact formula for members of a sequence. This is not always possible, depending
on the sequence, but it is often a good starting point.

• Finding a recurrence formula. Even though we mostly obtain generating functions from
recurrences, we can sometimes use them to generate new recurrence formulas, which can
potentially provide new insights.

• Find statistical properties of sequences. These are typically called Moment Generating
Functions in statistics and have many use cases.

• Finding asymptotic formulas for sequences. An important example of this is the Prime Number
Theorem.

• Proving analytic properties of the sequence(convexity, unimodality).

• Proving combinatorial identities.

1.1 Example: Two-Term Recurrences

Example 1.1

Take the recurrence defined by an+1 = 2an + 1 for n ≥ 0, a0 = 0. We show that an = 2n − 1
using generating functions.

Proof. Define A(x) =
∑

n≥0 anx
n. By multiplying the recurrence relation by xn and summing over

n, we have ∑
n≥0

an+1x
n = 2

∑
n≥0

anx
n +

∑
n≥0

xn = 2A(x) +
1

1− x
.

Then, note that ∑
n≥0

an+1x
n =

A(x)− a0

x
=
A(x)

x
.

We obtain
A(x)

x
= 2A(x) +

1

1− x
=⇒ A(x) =

x

(1− x)(1− 2x)
.
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To find a formula for the coefficients, we can use a partial fractions decomposition and expand
the corresponding Taylor series. In this case, we have

x

(1− x)(1− 2x)
=

(
2x

1− 2x
− x

1− x

)
=
∑
n≥1

(2x)n −
∑
n≥1

xn

=
∑
n≥1

(2n − 1)xn.

We now handle a more challenging two term recurrence.

Example 1.2

Take the recurrence defined by an+1 = 2an + n for n ≥ 0, a0 = 1. Find the generating function
and determine a closed formula for the coefficients.

Proof. As before, define A(x) =
∑

n≥0 anx
n. From the recurrence relation, we have

A(x)− 1

x
= 2A(x) +

∑
n≥0

nxn.

Note that ∑
n≥0

nxn =
∑
n≥0

xD(xn) = xD
∑
n≥0

xn = xD

(
1

1− x

)
=

x

(1− x)2

where D denotes the differentiation operator. We are assuming absolute convergence of the sums in
these computations so the exchanging of the sum and the differentiation operator is justified.

Plugging this in and solving for A(x), we obtain the generating function

A(x) =
1− 2x+ 2x2

(1− x)2(1− 2x)
=

−1

(1− x)2
+

2

1− 2x
.

To compute the coefficient of xn, note that the coefficient of −1
(1−x)2

is −n− 1 and the coefficient

from 2
1−2x is 2n+1. From this, we obtain that

an = 2n+1 − n− 1.

1.2 The Method of Generating Functions

Definition 1.3. Given a power series f(x), the symbol [xn]f(x) denotes the coefficient of xn in the
series f(x).
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Fact 1.4. [xn]{xaf(x)} = [xn−a]f(x).

Fact 1.5. [βxn]f(x) = 1/β[xn]f(x) for β ∈ R.

Given a recurrence formula, we have the following steps:

1. Note the set of values that are taken by the free variable(it is generally n ≥ 0 or n ≥ 1).

2. Define a generating function, A(x) =
∑

n anx
n.

3. Multiply both sides of the recurrence by xn and sum over n.

4. Express both sides of the equation in terms of A(x).

5. Solve for A(x). If an exact formula is needed, expand A(x) in a power series.

1.3 Example: Fibonacci Numbers

We return to the example of Fibonacci numbers, calculating the generating function. Define
F (x) =

∑
n≥0 Fnx

n.

We have ∑
n≥1

Fn+1x
n =

∑
n≥1

Fnx
n +

∑
n≥1

Fn−1x
n,

F (x)− x
x

= F (x) + xF (x),

F (x) =
x

1− x− x2
.

We can write 1− x− x2 = (1− xr+)(1− xr−) with r± = 1±
√

5
2 . It follows that

x

1− x− x2
=

1

r+ − r−

(
1

1− xr+
− 1

1− xr−

)
=

1√
5

∑
n≥0

(rn+ − rn−)xn.

1.4 Two Independent Variables

Let n and k be integers with 0 ≤ k ≤ n. How many ways can we choose a subset of k objects from
{1, 2, . . . , n}? We know that this is

(
n
k

)
, but we derive this using generating functions.

Proof. Let f(n, k) be the answer to the question. In the possible collection of subsets, we can divide
them into two piles: subsets containing n and subsets not containing n. In the first case, there are
f(n− 1, k − 1) possible subjects and the latter case there are f(n− 1, k) subsets. From this, we
obtain the recurrence

f(n, k) = f(n− 1, k) + f(n− 1, k − 1).
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Note the obvious initial condition f(n, 0) = 1. Define the generating function

Bn(x) =
∑
k≥0

f(n, k)xk.

Using the recurrence relation, we obtain

Bn(x)− 1 = (Bn−1(x)− 1) + xBn−1(x), B0(x) = 1

which gives
Bn(x) = (1 + x)Bn−1(x).

This is an easy recurrence to solve: namely Bn(x) = (1 + x)n. We obtain the desired result that
[xk]Bn(x) =

(
n
k

)
by the binomial theorem. We could also use Taylor’s formula: f(n, k) will be the

k-th derivative of (1 + x)n evaluated at x = 0 divided by k!.

An important thing to note is that our computation holds for arbitrary n ∈ C, provided k ∈ N.
From this, we obtain a general formula for binomial coefficients, given by(

n

k

)
=
n(n− 1) . . . (n− k + 1)

k!
.

1.5 Exponential Generating Functions

The choice of xn was somewhat arbitrary for our power series. In some cases, other choices can be
helpful.

Definition 1.6 (Exponential Generating Function). The EGF of a sequence {an}n≥0 is given by∑
n≥0

an
xn

n!
.

We call our vanilla generating function an ”Ordinary Generating Function”(OGF).

A useful operation in the case of EGFs is the x(D) log. This goes as follows:

1. Take the logarithm of both sides of the equation.

2. Differentiate both sides and multiply through by x.

3. Clear the fractions.

4. For each n, find the coefficients of xn on both sides and equate them.
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2 Series

2.1 Formal Power Series

We now consider generating functions as an object in the algebraic ring of formal power series.

Definition 2.1. A formal power series is an expression of the form
∑

n≥0 anx
n. We can identify

a formal power series with a sequence of coefficients {an}. The ring of formal power series over a
ring R is denoted R[[x]]. Addition and subtraction are as usual and multiplication is given by the
Cauchy product rule: ∑

n

anx
n
∑
n

bnx
n =

∑
n

(∑
k

akbn−k

)
xn.

Proposition 2.2. A formal power series f =
∑

n≥0 anx
n has a reciprocal if and only if a0 6= 0. In

this case, the reciprocal is unique.

Proof. Let f have a reciprocal, 1/f =
∑

n≥0 bnx
n. By definition, c0 = 1 = a0b0 which implies that

a0 6= 0. Furthermore, note that cn = 0 =
∑

k akbn−k so it follows that

bn = (−1/a0)
∑
k≥1

akbn−k,

which implies that the coefficients are uniquely determined.

Conversely, if a0 6= 0, we can determine the coefficients of the reciprocal 1/f via the above
formula.

Remark 2.3. In order to handle convergence issues, we define the composition of two formal power
series f ◦ g if and only if g0 = 0 or f is a polynomial.

Proposition 2.4. Suppose we have two formal power series f, g satisfying f ◦ g(x) = g ◦ f(x) = x
and f(0) = 0. Then f = f1x+ f2x

2 + . . . and g = g1x+ g2x
2 + . . . with f1, g1 6= 0.

We could also define derivatives of formal power series in the sense of usual calculus. It is easy to
show that these satisfies the usual rules calculus rules, as well as identities such as f ′ = 0⇒ f = a0

or f ′ = f ⇒ f = cex.
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2.2 Calculus of Formal Ordinary Power Series Generating Functions

We will use the notation f ↔o {an} to denote f =
∑

n anx
n. We have the following rules:

Fact 2.5. If f ↔o {an}, then for h ∈ N.

{an+h} ↔o f − a0 − · · · − ah−1x
h−1

xh
.

Fact 2.6. If f ↔o {an}, and P is a polynomial

P (xD)f ↔o {P (n)an}.

Fact 2.7. If f ↔o {an}, g ↔o {bn},

fg ↔o

{
n∑

r=0

arbn−r

}
.

Fact 2.8. If f ↔o {an}, then for k ∈ N.

fk ↔o

{ ∑
n1+···+nk=n

an1 . . . ank

}
.

Fact 2.9. If f ↔o {an}, then

f

1− x
↔o


n∑

j=0

aj

 .

2.3 Calculus of Formal Exponential Power Series Generating Functions

We will use the notation f ↔e {an} to denote f =
∑

n anx
n/n!. We have the following rules:

Fact 2.10. If f ↔e {an}, then for h ∈ N.

{an+h} ↔e Dhf.

Fact 2.11. If f ↔e {an}, and P is a polynomial

P (xD)f ↔e {P (n)an}.

Fact 2.12. If f ↔e {an}, g ↔e {bn},

fg ↔e

{
n∑

r=0

(
n

r

)
arbn−r

}
.

Fact 2.13. If f ↔e {an}, then for k ∈ N.

fk ↔e

{ ∑
n1+···+nk=n

n!

n1! . . . nk!
an1 . . . ank

}
.
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3 The Exponential Formula

3.1 Notation and Definitions

Definition 3.1. A card C(S, p) is a pair consisting of a finite set S and a picture p ∈ P . The weight
of C is n = |S|. A card of weight n is called standard if its label set is [n].

Definition 3.2. A hand is a set of cards whose label forms a partition of [n], for some n. The
weight of a hand is the sum of the weights of the cards in the hand.

Definition 3.3. A relabeling of a card C(S, p) with S′ is defined if |S| = |S′| and it is the card
C(S′, p). If S′ = [|S|], we have the standard relabeling of the card.

Definition 3.4. A deck D is a finite set of standard cards whose weights are all the same and
whose pictures are different. The weight of the deck is the common weight of all the cards in the
deck.

Definition 3.5. An exponential family F is a collection of decks D1, D2, . . . , where for each
n = 1, 2, . . . , the deck Dn is of weight n.

3.2 Examples of Exponential Families

Example 3.6 (Undirected Graphs F1)

Let G be an undirected graph of n vertices that are labeled with a set S of labels. The standard
relabeling is as follows : we relabel the vertices with [n], preserving the order of the vertices. A
card C(S, p) has a picture p which corresponds to a standard relabeling of G.

A hand is a collection of cards whole label sets partition [n], the weight of the hand. Each
hand H corresponds to a not-necessarily-connected graph with standard labels. The individual
components of the graph may have nonstandard labels, but the overall graph has a label set of
[n].

Using the above definitions, the set of vertex labeld graphs forms an exponential family,
where each card is a labeled connected graph, each deck Dn is the set of connected standard
labeled graphs of n vertices, and each hand is a standard labeled graph.

Example 3.7 (Permutations F2)

The cards are of the form C(S, p) where S is a set of integers and p is a cyclic permutation of
[|S|]. A deck of these cards is one sample of every distinct standard card of a given weight. For
example, the n-th deck Dn contains exactly (n− 1)! cards, one for each cyclic permutation of
[n]. A hand is a collection of cards whose label sets partition [n] for some n. This would consist
of k label sets S1, . . . , Sk whose union is [n] and a cyclic permutation for each Si.

3.3 Main Counting Theorems

Suppose we have two exponential families F ′,F ′′ with disjoint picture sets P ′, P ′′ respectively. We
can form a third family F = F ′ ⊕F ′′ as follows: fix n ≥ 1. From F ′ we take all the cards from D′n

8
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and put them in a new pile. From F ′′, we add the cards from D′′n to the new pile. Then, we repeat
this for each n ≥ 1.

Lemma 3.8 (Fundamental Lemma of Labeled Counting). Let F ′,F ′′ be exponential families
and F = F ′ ⊕ F ′′ the merged exponential family. Let H′(x, y),H′′(x, y) and H(x, y) denote the
corresponding two-variable generating functions of the families. Then

H(x, y) = H′(x, y)H′′(x, y).

Proof.

h(n, k) =
∑
n′,k′

(
n

n′

)
h′(n′, k′)h′′(n− n′, k − k′)

=

[
xn

n!
yk
]
H′(x, y)H′′(x, y).

Theorem 3.9 (The Exponential Formula). Let F be an exponential family whose deck and hand
enumerators and D(x) and H(x, y), respectively. Then,

H(x, y) = eyD(x).

In particular,

h(n, k) =

[
xn

n!

]{
D(x)k

k!

}
.

Corollary 3.10. Let F be an exponential family, let D(x) be the egf of the sequence {dn} of sizes
of the decks, and let H(x)↔e {hn}, where hn is the number of hands of weight n. Then,

H(x) = eD(x).

Corollary 3.11. Let T be a set of positive integers, let eT (x) =
∑

n∈T x
n/n!, and let hn(t) be the

number of hands whose weight is n and whose number of cards belongs to the allowable set T . Then,

{hn(T )} ↔e eT (D(x)).

The remaining section on the exponential family are a bit technical and seem beyond my use
cases. I may return to this upon completing Chapter 4.
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4 Applications of Generating Functions

4.1 Statistical Moments

Suppose f(n) is the number of objects, in a set S of N objects that have n properties, with∑
n f(n) = N . Recall the mean µ is defined by

µ =
1

N

∑
n

nf(n).

Fact 4.1. Suppose we had F (x)↔o {f(n)}. Then, µ = F ′(1)
F (1) .

We can do the same for the variance σ2, which is defined by

σ2 =
1

N

∑
ω∈s

(n(ω)− µ)2.

Fact 4.2. Suppose we had F (x)↔o {f(n)}. Then σ2 = {(logF )′ + (logF )′′}x=1.

We can also use these to derive statistics for exponential families. Namely, we have the following
theorem:

Theorem 4.3. In an exponential family F , the average number of cards in hands of weight n is

µ(n) = [h(n)xn/n!]D(x)H(x) =
1

h(n)

∑
r

(
n

r

)
drh(n− r).

Example 4.4

Applying the formula to cycles of permutations, with h(n) = n!, we have

µ(n) =
1

n!

∑
r

(
n

r

)
(r − 1)!(n− r)! =

n∑
r=1

1

r
= Hn.
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4.2 The Sieve Method

If S ⊆ P is a set of properties, let NS be the number of objects whose set of properties contains S.
For a fixed, r ≥ 0, consider the sum

Nr =
∑
|S|=r

NS

Let the symbol P (ω) denote the set of properties that ω has. Then, we have

Nr =
∑
|S|=r

NS

=
∑
|S|=r

∑
ω∈Ω,S⊆P (ω)

1

=
∑
ω∈Ω

∑
|S|=r,S⊆P (ω)

1

=
∑
ω∈Ω

(
|P (ω)|
r

)

Suppose there are et objects that have exactly t properties. The above formula simplifies to

Nr =
∑
t≥0

(
t

r

)
et.

We wish to be able to calculate {et} from {Nt}, which are often much easier to compute. To do
this, let N(x)↔ {Nr}, E(x)↔ {et}. We have

N(x) =
∑
r

∑
t

(
t

r

)
etx

r

=
∑
t

et
∑
r

(
t

r

)
xr

=
∑
t

et(x+ 1)t

= E(x+ 1).

For an explicit formula, using E(x) = N(x− 1), we obtain

ej =
∑
t

(−1)t−j
(
t

j

)
Nt.
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Example 4.5 (Fixed points of permutations)

Of the n! permutations of n letters, how many have exactly r fixed points?

First, we can compute NS = (n− |S|)!, since we keep the letters in S fixed and permute the
other letters.

Next,

Nr =
∑
|S|=r

NS =
∑
|S|=r

(n− |S|)! =

(
n

r

)
(n− r)! =

n!

r!
.

The ordinary generating function N(x) is given by

N(x) =

n∑
r=0

n!

r!
xr = n!

n∑
r=0

xr

r!
.

Finally,

E(x) =
∑
t

etx
t = n!

n∑
r=0

(x− 1)r

r!
.

Example 4.6 (Subset Combinatorial Identity)

For fixed n ∈ N, take Ω to be the
(

2n
n

)
ways of choosing an n-subset of [2n]. For the set P of

properties, we take the list of n properties; an n-subset Q has the property i if i 6∈ Q for each
i ∈ [n].

Note that

NS =

(
2n− |S|

n

)
,

Then,

Nr =
∑
|S|=r

NS =

(
n

r

)(
2n− r
n

)
.

It follows that ∑
j

ejt
j =

∑
r

(
n

r

)(
2n− r
n

)
(t− 1)r.

Alternatively, note that ej =
(
n
j

)2
, since we can choose j elements that are missing in

(
n
j

)
ways and we can choose the other j elements from n+ 1, . . . , 2n in

(
n
j

)
ways. It follows that

∑
j

(
n

j

)2

tj =
∑
r

(
n

r

)(
2n− r
n

)
(t− 1)r.

4.3 Snake Oil Method

The method handles a large number of combinatorial identities. It goes as follows:

12



Vishal Raman 4 Applications of Generating Functions

1. Identify the free variable, say n. Give a name to the sum f(n).

2. Let F (x) be the opsgf whose [xn] is f(n).

3. Multiply the sum by xn, and sum on n.

4. Interchange the order of summation and evaluate the inner one in a simple closed form.

5. Identify the coefficients of the generating function of the answer.

Some useful closed form expressions we will use are∑
r≥0

(
r

k

)
xr =

xk

(1− x)k+1
,

∑
r

(
n

r

)
xr = (1 + x)n,

∑
n

1

n+ 1

(
2n

n

)
xn =

1

2x
(1−

√
1− 4x).

Example 4.7

Compute ∑
k≥0

(
k

n− k

)
.

Proof. Define f(n) =
∑

k≥0

(
k

n−k
)
. We have

F (x) =
∑
n

xn
∑
k≥0

(
k

n− k

)

=
∑
k≥0

∑
n

(
k

n− k

)
xn

=
∑
k≥0

xk
∑
n

(
k

n− k

)
xn−k

=
∑
k≥0

xk
∑
r

(
k

r

)
xr

=
∑
k≥0

xk(1 + x)k

=
∑
k≥0

(x+ x2)k

=
1

1− x− x2
.

This is exactly the generating function for the Fibonacci numbers, f(n) = Fn+1.
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Example 4.8

Compute ∑
k

(
n+ k

m+ 2k

)(
2k

k

)
(−1)k

k + 1
.

Proof.

F (x) =
∑
n≥0

xn
∑
k

(
n+ k

m+ 2k

)(
2k

k

)
(−1)k

k + 1

=
∑
k

(
2k

k

)
(−1)k

k + 1
x−k

∑
n≥0

(
n+ k

m+ 2k

)
xn+k

=
∑
k

(
2k

k

)
(−1)k

k + 1
x−k

∑
r≥k

(
r

mm+ 2k

)
xr

=
∑
k

(
2k

k

)
(−1)k

k + 1
x−k

xm+2k

(1− x)m+2k+1

=
xk

(1− x)m+1

∑
k

(
2k

k

)
1

k + 1

(
−x

(1− x)2

)k

=
−xm−1

2(1− x)m−1

(
1−

√
1 +

4x

(1− x)2

)

=
−xm−1

2(1− x)m−1

(
1− 1 + x

1− x

)
=

xm

(1− x)m
.

It follows that f(n,m) =
(
n−1
m−1

)
.
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5 Problem Solving

Problem 5.1 (Putnam 2020 A2). Let k be a non-negative integer. Evaluate

k∑
j=0

2k−j
(
k + j

j

)
.

Proof. We claim the sum evaluates to 4k. Note that
(
k+j
j

)
=
(
k+j
k

)
. It follows that the sum is the

coefficient of xk in the power series
∑n

j=0 2k−j(1 + x)k+j . Evaluating this, we find

n∑
j=0

2k−j(1 + x)k+j = 2k(1 + x)k
k∑

j=0

2−j(1 + x)j

= 2k(1 + x)k
1− (1 + x)k+1/2k+1

1− (1 + x)/2

=
2k+1(1 + x)k − (1 + x)2k+1

1− x
= 2k+1(1 + x)k − (1 + x)2k+1

∑
n≥0

xn.

It follows that the coefficient of xk is given by

2k+1
k∑

j=0

(
k

j

)
−

k∑
j=0

(
2k + 1

j

)
= 22k+1 − 22k = 4k.

Problem 5.2. (CJMO 2020/1) Let N be a positive integer, and let S be the set of all tuples with
positive integer elements and a sum of N . For all tuples t, let p(t) denote the product of all the
elements of t. Evaluate ∑

t∈S
p(t).

Proof. We claim the sum evaluates to F2N , where Fk denotes the k-th Fibonacci number. Note that

the sum can be represented as the coefficient of xN in
∑N

k=1

(∑
n≥0 nx

n
)k

. Evaluating this, we find

N∑
k=1

∑
n≥0

nxn

k

=
N∑
k=1

(
x

(1− x)2

)k

=
N∑
k=1

xk

(1− x)2k

=

N∑
k=1

∑
j≥0

(
2k − 1 + j

2k − 1

)
xj+k.
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The coefficient of xN is given by

N∑
k=1

(
N + k − 1

2k − 1

)
=

N∑
k=1

(
N + k − 1

N − k

)
=
∑
j≥0

(
2N − 1− j

j

)
= F2N .

Problem 5.3 (IMO 1995/6). Let p be an odd prime number. How many p-element subsets A of
{1, 2, . . . , 2p} are there, the sum of whose elements is divisible by p?

Proof. Define f(x, y) =
∏2p

k=1(1 + xky). We wish to find the sum of the coefficients of terms of the
form xp`yp. We do this by first considering f as a generating function in x using the root of unity

filter associated to ω = e
2πi
p . Then, we read off the coefficient of yp to find the desired expression.

Note that for 1 ≤ k ≤ p− 1,

f(ωk, y) =

2p∏
k=1

(1 + ωky) =

p∏
k=1

(1 + ωky)2 = (1 + yp)2.

It follows that

1

p

p−1∑
i=0

f(ωk, y) =
1

p

(
(1 + y)2p +

p−1∑
i=1

f(ωk, y)

)

=
(1 + y)2p + (p− 1)(1 + yp)2

p
.

Finally, the coefficient of yp is given by (
2p
p

)
+ 2(p− 1)

2
.

16


	Introductory Ideas and Examples
	Example: Two-Term Recurrences
	The Method of Generating Functions
	Example: Fibonacci Numbers
	Two Independent Variables
	Exponential Generating Functions

	Series
	Formal Power Series
	Calculus of Formal Ordinary Power Series Generating Functions
	Calculus of Formal Exponential Power Series Generating Functions

	The Exponential Formula
	Notation and Definitions
	Examples of Exponential Families
	Main Counting Theorems

	Applications of Generating Functions
	Statistical Moments
	The Sieve Method
	Snake Oil Method

	Problem Solving

