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§1 August 27th, 2020

§1.1 Introduction

We begin by considering the problem of conduction of heat in a circle. We use the
map x 7→ eix, x ∈ [0, 2π). Where u is the temperature, t is the time, we believed that
ut = γuxx, where subscripts denote partial derivatives. We also have an initial condition,
f(x) = u(x, 0).

There are some simple solutions einxe−γn
2t|t=0 = einx. The product of solutions, the

sum of solutions, and scalar multiple of solutions are all solutions, so he wrote the solution
as

f(x) =

∞∑
n=−∞

ane
inx, u(x, t) =

∑
n

ane
−γn2teinx.

§1.2 Fourier Analysis

We take a circle {z ∈ C : |z = 1|}, which can also be thought of as R/(2πZ), with the
map x 7→ eix. Suppose we have G a finite abelian group, and Ĝ = {hom ϕ : G→ R/Z},
the dual group. Ĝ is also a group, formally known as the set of characters.

Example 1.1

If we take G = ZN = Z/NZ, with the map x 7→ e2πixn/N , for n ∈ Zn.
Similarly, taking G ∼= ZN1 × ZN2 × . . . , we take x 7→

∏
e2πixn/Ni .

Take eξ(x) = e2πiξ(x), where ξ : G 7→ R/Z. Working in L2(G), we note the following:

Fact 1.2. If ξ 6= ϕ, then 〈eξ, eϕ〉 = 0.

Proof. ∑
x∈G

ξ(x)ϕ(x) =
∑
u

ξ(u+ y)ϕ(u+ y)−

(∑
u

ξ(u)ϕ(u)

)
ξ(y)ϕ(u).

Hence, either 〈ξ, ϕ〉 = 0 or ξ(y)ϕ(y) = 1 for all y ∈ G, which implies ξ = ϕ.

If follows that {ef : f ∈ Ĝ} is an orthonormal set in L2(G) Then, the dimension is

|Ĝ| = |G| = dim(L2(G)). Hence, the set forms an orthonormal basis for L2(G).
Then, for all f ∈ L2(G), we have

‖f‖2L2(G) =
∑
ϕ∈Ĝ

| 〈f, eξ〉 |2,

f =
∑
eξ∈Ĝ

〈f, eξ〉 eϕ.

§1.3 On Tori of Arbitrary Dimension

We define T = R/2πZ, from [0, 2π]. We then work on Td, d ≥ 1.
For f ∈ L2(Td), we define

f̂(n) = (2π)−d
∫
f(x)e−inxdx.

We have an inner product 〈f, g〉 =
∫
Td f(x)g(x)dµ(x) defined over a Lebesgue measure

or Euclidean measure on Td.
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Theorem 1 (Parseval’s Theorem)

For all f ∈ L2(Πd),

‖f‖2L2 = (2π)d
∑
n∈Zd

|f̂(n)|2,

and we have
f =

∑
n∈Zd

f̂(n)einx,

in the sense that
‖f −

∑
n∈Zd

f̂(n)einx‖2L → 0.

Note: you can usually figure out the constant with the simplest example, f = 1.

Proof. Take Td, en(x) = ein·x. The {(2π)−d/2en : n ∈ Zd} is orthonormal(left as an
exercise). Then, for all f ,

∑
n

〈
f, (2π)−d/2en

〉
≤ ‖f‖2L2 , with equality if the set is a

basis(Bessel’s inequality).
It suffices to show that span{en} is dense in L2. Take P = span{en}, and note that P

is an algebra of continuous functions on Πd, closed under conjugation, contains 1, and
separates points. Hence, the Stone-Weierstrass theorem implies that P is dense in Co(Πd)
with respect to ‖ · ‖Co . Then Co ⊂ L2 is dense(general theory about Compact Hausdorff
spaces, Radon Measures).

The statement ‖f−
∑

n∈Zd f̂(n)einx‖2L → 0 follows from the general theory of orthonor-
mal systems.

§1.4 Euclidean Spaces

We work in Rd, (d ≥ 1). Take ξ ∈ Rd, and x 7→ xξ ∈ R is a homomorphism from Rd → R,
but if we take x 7→ eixξ, we have a homomorphism from Rd 7→ Γ. We try to define the
following:

f̂(ξ) =

∫
Rd
f(x)e−ixξdx = 〈f, eξ〉L2(Rd),

where exi(x) = eixξ.
Some problems:

1. eξ 6∈ L2(Rd)

2. f(x)e−ixξ need not be in L1 if f ∈ L2.

We fix this by imposing extra conditions.

Definition 1.3. For f ∈ L1(Rd), we define

f̂(ξ) =

∫
Rd
f(x)e−ixξdx.

Note that f ∈ L1 implies that f̂ is bounded, continuous. We see this as follows:
f̂(ξ+u)− f̂(ξ) =

∫
f(x)e−ixξ(e−ixu− 1)dx. If we let u→ 0, the right goes to 0 pointwise,

and (2|f |) ∈ L1 dominates the integral, it goes to 0.

4
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Proposition 1.4

If f ∈ L1 ∩ L2(Rd), f̂ ∈ L2(Rd),

‖f̂‖2L2 = (2π)d‖f‖2L2 .

Theorem 2 (Plancherel’s Theorem)

π : L1 ∩ L2 → L2 extends uniquely to π̂ : L2(Rd) → L2(Rd), linear, bounded,
‖π̂f‖2L2 = (2π)d‖f‖2L2 , and for all f ∈ L2, we have an inverse Fourier Transform,

f̌(y) =
∫
f(ξ)eiyξdξ for f ∈ L1 ∩ L2, and ·̌ also extends.

Finally,

‖f − (2π)−d
∫
|ξ|≤R

f̂(ξ)eixξdξ‖L2 → 0.

Note that f̌(y) = f̂(−y).

Proof. We first prove that ‖f‖2L2 = (2π)−d‖f̂‖2L2 for all f ∈ L1 ∩ L2. We prove this for a
dense subspace P of L2. We will show later that there exists a subspace V ⊂ L2(Rd)
so that V is dense in L2, V ⊂ L1, ∀f ∈ V, there exists Cf < ∞, so for all ξ ∈ Rd,
|f̂(ξ)| ≤ Cf (f(ξ))−d and f is continuous with compact support.

We are given f : Rd → C supported where |x| ≤ R = Rf <∞. For large t ≥ 0, define
ft(x) = f(tx)(this shrinks the support of f), supported where |x| ≤ R/t < π. We can
then think of ft : Td → C.

Now, we calculate

f̂t(n) = (2π)d
∫
Td
ft(x)e−inxdx

= t−d(2π)d
∫
Rd
f(x)e−in/tydy

= t−d(2π)−df̂(t−1n),

where the first hat is on Td and the second is on Rd, so the Fourier coeficients in the
euclidean case are scalar multiples of the Fourier coefficients in the Tori case.

Thus,

‖ft‖2L2(Td) = t−d‖f‖2L2(Rd) = cd
∑
n∈Zd

|f̂t(n)|2 = c′dt
−2d

∑
n

|f̂(t−1n)|2

Hence,

‖f‖2L2(Rd) = c′dt
−d
∑
n

|f̂(t−1n)|2.

This has a nice tiling Riemann sum interpretation: if we take Rd and tile it with cubes
of sidelength 1/t where one corner is at t−1n for n ∈ Zd, then

‖f‖2L2(Rd) = c′dt
−d
∑
n

∣∣∣f̂(t−1n)
∣∣∣2 =

∫
Rd
|gt|2dx,

where g(x) = f̂(t−1n).

5
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We claim ∫
Rd
|gt|2 →

∫
Rd
|f̂ |2,

which follows from the dominated convergence theorem: where we take a sequence over
t going to infinity, with dominator C2

f (1 + |ξ|)−2d in L1 and |f̂(ξ)| ≤ C2
f (1 + |ξ|)−2d.

Furthermore, we have gt(ξ) → f̂(ξ) as t → 0, and f̂ is continuous so gt is pointwise
convergent, and we have

|gt(ξ)| = |f̂(t−1n)| ≤ Cf (1 + |t−1n|)−d ≤ C ′(1 + |ξ|)−d.

6



Vishal Raman (October 13, 2020) Math 258

§2 September 1st, 2020

§2.1 Proof of Plancherel’s Theorem

Last time

• Rd,
f̂(ξ) =

∫
Rd
e−ix·ξf(x)dx.

• V = (f ∈ L1∩L2(Rd)) : |f̂(ξ)| 〈ξ〉d is a bounded linear function, 〈x〉 = (1+|x|2)1/2 ≥
1,= |x| for x large.

• Claim: V is dense in L2(Rd). Then ‖f̂‖L2 = (2π)d/2‖f‖L2 for all f ∈ V so there
exists a unique bounded linear operator F on L2(Rd), where F takes a function
to it’s fourier transform.

• We discussed some properties of F .

– ‖Ff‖2 = (2π)d/2‖f‖2
– F is onto.

– For all f ∈ L2, ∥∥∥∥∥f − (2π)−d
∫
|ξ|≤R

eix·ξF (f)(ξ)dξ

∥∥∥∥∥
L2

→ 0,

in the limit where R→∞.

First note that F has closed range(this was an exercise). It suffices to show: If g ∈
L2, g ⊥ F (f) for all f ∈ V , then g = 0.

Proof. First, note that
0 = 〈g,F (f)〉 = 〈F ∗(g), f〉 ,

and for all g ∈ V ,

F ∗g(x) =

∫
g(ξ)eix·ξdξ

Therefore, F ∗(g)(x) = (Fg)(−x) for all g ∈ V , which is dense in L2. Hence, Fg = 0,
and the Fourier transform preserves norms, so g = 0.

We also claimed the following: Let f ∈ L2:

‖f(x)− (2π)−d
∫
|ξ|≤R

(Ff)(ξ)eix·ξdξ‖22 → 0.

Proof. Let gr = (2π)−d
∫
|ξ|≤R(Ff)(ξ)eix·ξdξ.We have to show 〈f, gr〉 → ‖f‖22. Then

‖f − gr‖22 = ‖f‖22 + ‖gr‖22 − 2Re〈f, gr〉 → ‖f‖22 + ‖f‖22 − 2‖f‖22.

〈f, gR〉 = (2π)−d
∫
f(x)

∫
|ξ|≤R

(Ff)(ξ)eix·ξdξdx

= (2π)−d
∫
|ξ|≤R

(∫
f(x)e−ix·ξdx

)
(Ff)(ξ)dξ

= (2π)−d
∫
|ξ|≤R

|Ff(ξ)|2dξ → (2π)−d‖Ff‖22 = ‖f‖22.

7
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However, it’s not clear that we can use Fubini’s theorem. We would need f ∈ L1 ∩ L2.
But this is not an issue as L1 ∩ L2 ⊂ L2 is dense, so if we let ε > 0, f = G+ h, ‖h‖2 ≤ ε
and G ∈ L1 ∩ L2. Showing the convergence from here is an exercise.

We still need V = (f ∈ L1 ∩ L2 : 〈ξ〉d (f̂(ξ)) is bounded) is dense in L2. We’ll discuss
this in the future.

§2.2 Introduction to Convolution

Our meta definition is f ∗ g(x) =
∫
f(x− y)g(y)dy, but it will depend on the conditions

of the function for the integral to be defined.
Convolution is generally associated to a group, where∫

G
f(xy−1g(y)dµ(y)),

with the Haar measure(done in 202b).
If we substitute y = x− u, then

f ∗ g(x) =

∫
f(u)g(x− u)du = g ∗ f(x).

It is also associative: (f ∗ g) ∗ g = f ∗ (g ∗ h) for all f, g, h(involves Fubini’s theorem).
We can formally write

f ∗ g(x) =

∫
Rd×Rd

f(u)g(v)dλx(u, v),

where λx is supported on Λ = {(u, v) : u + v = λ}(an affline subspace). If we have a
subset E ⊂ Λ, λx(E) = |π1(E)| = |π2(E)|, where πi are Lebesgue measure s of projections
on the i-th factor. Note the following: suppose that f, g are continuous with compact
support. Then supp(f ∗ g) ⊂ supp(f) + supp(g), where A+B = {a+ b : (a, b) ∈ A×B}.

Let T : C0
0(Rd) → C0

b (Rd) be bounded, linear and T ◦ τy = τy ◦ T for all x ∈ Rd
(τyf(x) = f(x+ y), a translation). Then, there exists a Complex Radon measure µ on
Rd so that for all f ∈ C0

0 , T (f) = f ∗ µ, where

f ∗ µ(x) =

∫
f(x− y)dµ(y).

In the case of T1, f(x) =
∑∞

n=−∞ f̂(n)einx for all f ∈ L2. Suppose we wanted to
consider the partial sums,

N∑
n=−N

f̂(n)einx = SN (f)(x).

In what sense does SNf → f , and for which functions f do we have convergence?

SN (f)(x) =
N∑

n=−N
einx(2π)−1

∫ π

−π
f(y)e−inydy = (2π)−1

∫
f(y)

N∑
n=−N

ein(x−y)dy

= (2π)−1

∫ π

−π
f(y)Dn(x− y)dy.

The Dirichlet Kernels, DN (x) =
∑N

n=−N e
inx = sin (N+1/2)x

sin (x/2) if x 6= 0 or DN (x) = 2N+1
if x = 0.

8
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§2.3 General Convolution

Theorem 3

Let f, g ∈ L1(Rd). Then, the following are true:

• y 7→ f(x− y)g(y) ∈ L1(Rd) for almost every x ∈ Rd.

• x 7→
∫
f(x− y)g(y)dy is Lebesgue measurable.

• f ∗ g ∈ L1(Rd) and ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1.

• If f, g ≥ 0, then ‖f ∗ g‖1 =
∫
f ∗ g =

∫
f
∫
g.

• The operation commutative and associative, so L1 is an algebra, but it no
multiplicative identity, so no inverses.

• For f, g ∈ L1, (f̂ ? g) = f̂ · ĝ.

In other words, convolution is a nice bilinear operation.

Proof. Let F (x, y) = f(x − y)g(y), F : Rd+d → C is Lebesgue measurable. We claim
that F ∈ L1(Rd × Rd). It follows from∫
|F (x, y)|dxdy =

∫
|f(x− y)||g(y)|dxdy =

∫
|g(y)|dy

∫
|f(x)|dx = ‖g‖1‖f‖1 <∞.

Now, F ∈ L1, so by Fubini’s theorem, for almost every x, y → f(x− y)g(y) ∈ L1 and
x 7→

∫
f(x− y)g(y)dy is Lebesgue measurable.

‖f∗g‖1 =

∫
|f∗g(x)|dx =

∫ ∣∣∣∣∫ f(x− y)g(y)dy

∣∣∣∣ dx ≤ ∫ ∫ |f(x−y)||g(y)|dydx = ‖f‖1‖g‖1.

Note that
∫

(f ∗ g)(x)dx = ‖f‖1‖g‖1, for non-negative functions.
Finally,

(f ∗ g)∧(ξ) =

∫
e−ix·ξ

(∫
f(x− y)g(y)dy

)
dx

=

∫ (∫
e−ix·ξf(x− y)dx

)
dy, x = u+ y

=

∫ (
e−i(u+y)·ξf(u)du

)
g(y)dy

=

∫
e−iy·ξ f̂(u)g(y)dy

= f̂(ξ) · ĝ(ξ).

Example 2.1 (A Warning)

In R1, f(x) = |x|−2/31|x|≤1, which has an asymptote at 0. f ∈ L1, and

(f ∗ f)(0) =

∫ 1

−1
|u|−4/3dy = +∞.

9
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Proposition 2.2

Let p ∈ [1,∞]. Let f ∈ L1, g ∈ Lp. Then,

• y 7→ f(x− y)g(y) ∈ L1 for almost every x ∈ Rd.

• x 7→
∫
f(x− y)g(y)dy is Lebesgue measurable.

• f ∗ g ∈ Lp(Rd), ‖f ∗ g‖p ≤ ‖f‖1‖g‖p.

Proof. For p =∞,
∫
f(x− y)g(y)dy ∈ C0(Rd).

If 1 < p <∞, LP ⊂ L1 + L∞, as follows:

f(x) = f(x)1|f(x)|≤1 + f(x)1f(x)>1.

We can prove the rest with Minkowski’s inequality, or a simpler way. Let q = p′ = p
p−1

(hence 1
q + 1

p = 1). We use the norm definition,

‖f ∗ g‖p = sup
‖h‖q≤1

∫
|g ∗ f | · |h|.

∫
|g ∗ f | · h ≤

∫
(|g| ∗ |f |) · h =

∫ ∫
|g(x− y)||f(y)|dyh(x)dx

=

∫
|f(y)|

∫
|g(x− y)|h(x)dxdy ≤

∫
|f(y)|‖g‖p ∗ 1dy = ‖f‖1‖g‖p.

10
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§3 September 3rd, 2020

§3.1 Convolution and Continuity

Recall convolution:

f ∗ g(x) =

∫
f(x− y)g(y)dy, f ∗ µ(x) =

∫
Rd
f(x− y)dµ(y),

where f is continuous, bounded, µ is a complex Radon measure(|µ| is finite)

Proposition 3.1

Let T : C0
0 → C0

b . Suppose T is translation invariant: T ◦ τy = τy ◦ T for all y ∈ Rd.
[There exists A < ∞ : ‖Tf‖C0 ≤ A‖f‖C0 for all f . Recall ‖f‖C0 = supx |f(x)|,
and C0

0 , C
0
b are Banach spaces.] There exists a complex radon measure µ such that

Tf = f ∗ µ for all f .

Proof. Given T : C0
0 → C0

b , consider the map ` : C0
0 → C given by f 7→ (Tf)(0). It is

clear that ` is linear. Furthermore, ` is bounded, since

|Tf(0)| ≤ ‖Tf‖C0 ≤ A‖f‖C0 ,

so ` ∈ (C0
0 )∗. Recall the Riesz Representation Theorem, there exists ν, a complex Radon

measure, such that for all f ∈ C0
0

`(f) =

∫
fdν.

Let y ∈ Rd. We have

Tf(−y) = Tf(0− y) = (τyTf)(0) = T (τyf)(0) =

∫
τyf(x)dν(x) =

∫
f(x− y)dν(x).

Similarly, for all x, (Tf)(−x) =
∫
f(y − x)dν(y). [See lecture notes for correct algebra,

sad].

§3.2 Convolution and Differentiation

Informally,
∂

∂xj

∫
f(x− y)g(y)dy =

∫
∂f

∂xj
f(x− y)g(y)dy.

Proposition 3.2

Assume f ∈ C1(Rd), g ∈ L1 and f,∇f is bounded. Then

f ∗ g ∈ C1,
∂

∂xj
(f ? g) =

(
∂f

∂xj

)
∗ g.

Proof. We assume d = 1 for clarity.

(f ∗ g)(x+ t)− (f ∗ g)(x)

t
=

∫
f(x+ t− y)− f(x− y)

t
g(y)dy.

11
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Let t→ 0. Use DCT, with dominator

|g(y)| · sup
t,u

|f(u+ t)− f(u)|
|t|

.

The supremum is finite by the mean value theorem.

Example 3.3

Take g ∈ L∞, f ∈ C1, and there exists a <∞ such that for all x,

|f(x)|+ |∇f(x)| ≤ A〈x〉−γ .

Hence, f,∇f ∈ L1. Then f ∗ g ∈ C1,∇(f ∗ g) = (∇f) ∗ g.

We can iterate this: Under appropriate conditions

∂α(f ∗ g)

∂xα
=
∂αf

∂xα
∗ g,

∂α+β(f ∗ g)

∂xαβ
=
∂αf

∂xα
∗ ∂

βg

∂xβ
.

Proposition 3.4

If f ∈ L1 and g ∈ L∞, then f ∗ g ∈ C0
b .

Proof. Recall: If f ∈ L1(Rd), then y 7→ τyf ∈ L1 is continuous: As y → 0,

‖τyf − f‖1 → 0.

Then,

(f ∗g)(x)−(f ∗g)(x′) =

∫
(f(x−y)−f(x′−y))g(y)dy =

∫
[f(x−y)−(τuf)(x−y)]g(y)dy,

where u = x′ − x. As u→ 0, ‖f − τuf‖1 → 0, and g ∈  L∞, so the integral approaches 0,
as desired.

§3.3 Approximation

Definition 3.5 (Approximate Identity Sequence). An approximate identity sequence
for Rd is (ϕn)n∈N, ϕn ∈ L1(Rd) with the following conditions:

•
∫
Rd ϕn = 1.

• For all δ > 0,
∫
|x|≥δ |ϕn|dx→ 0 as n→∞.

12
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Theorem 4

Let (ϕn) be an approximate identity sequence in Rd.

1. Let f ∈ C0
b be uniformly continuous. Then f ∗ ϕn → f uniformly.

2. Let f ∈ C0
b . Then f ∗ ϕn → f uniformly on every compact set.

3. If 1 ≤ p ≤ ∞, then for all f ∈ Lp, ‖f ∗ ϕn − f‖p → 0.

[All the above limits are taken for n→∞.]

Proof.

f ∗ ϕn(x)− f(x) =

∫
f(x− y)ϕn(y)dy − f(x)

=

∫
(f(x− y)− f(x))ϕn(y)dy

Then,

|f ∗ ϕn(x)− f(x)| ≤
∫
|f(x− y)− f(x)||ϕn(y)|dy.

Let δ > 0. Then,∫
|f(x−y)−f(x)||ϕn(y)|dy =

∫
|y≤δ|

|f(x−y)−f(x)||ϕn(y)|dy+

∫
|y≥δ|

|f(x−y)−f(x)||ϕn(y)|dy.

∫
|y≤δ|

|f(x− y)− f(x)||ϕn(y)|dy ≤ ‖ϕn‖1 · sup
x,|y|≤δ

|f(x− y)− f(x)|

= ‖ϕn‖1 · ωf (δ)

≤ A · ωf (δ).

Then ∫
|y≥δ|

|f(x− y)− f(x)||ϕn(y)|dy ≤
∫
|y|≥δ

2‖f‖C0 · |ϕn(y)|dy

≤ 2‖f‖C0

∫
|y|≥δ

|ϕn|dy.

Hence

|f ∗ ϕn(x)− f(y)| ≤ Aωf (δ) + 2‖f‖C0

∫
|y|≥δ

|ϕn|dy.

Taking the lim sup, the second term goes to 0, so for all δ > 0,

lim
n→∞

sup ‖f ∗ ϕn − f‖C0 ≤ Aωf (δ).

Since f is uniformly continuous, limδ→0 ωf (δ) = 0, which proves the claim.

13



Vishal Raman (October 13, 2020) Math 258

Corollary 3.6

C∞ ∩ Lp is dense in Lp for all 1 ≤ p ≤ ∞.

Proof. We want to construct (ϕn) with ϕn ∈ C∞0 .
We claim there exists a function ϕ ∈ C∞0 (Rd) with

∫
ϕ = 1 and ϕ ≥ 0. In d = 1, take

h(x) = 1x > 0e−‖x‖. Then, define ϕ(x) = h(x)h(1− x) ∈ C∞0 . Then, we normalize ϕ.
Now, take ϕn(x) = ndϕ(nx).

Example 3.7

Let ϕ ≥ 0,
∫
ϕ = 1. Define ϕn(x) = ndϕ(nx). Then

∫
ϕn = 1.

Furthermore, ∫
|x|≥δ

ndϕ(nx)dx =

∫
|y|≥nδ

ϕ(y)dy → 0.

Example 3.8

Let ϕ(x) = (2π)−d/2e−|x
2|/2, x ∈ Rd. Let t > 0 and ϕt(x) = (2π)−d/2t−d/2e−|x|

2/(2t).
Now t→ 0+ and ∫

|x|≥δ
ϕt(x)dx→ 0.

This is an approximate identity family.

Example 3.9 (Interpretation of f ∗ g)

f ∗ g =

∫
τyf(x) · g(y)dy.

If g ≥ 0 and
∫
g = 1, then we have an average of translates of f .

As n→∞, g = ϕn so the weight concentrates asymptotically at the origin.

14
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§4 September 8th, 2020

§4.1 Fourier Transform Identities

We have many functorial identities.

1. For f ∈ L1,
(τyf)∧(ξ) = e−iy·ξ f̂(ξ).

2. For f, g ∈ L1(R),
(f ∗ g)∧ = f̂ · ĝ.

3. For f ∈ L1,
(eix·ηf)∧(ξ) = f̂(ξ − η).

4. We use the notation

ξα =
d∏
j=1

ξ
αj
j .

For f ∈ C0, C |α|, C0
0 ,

(∂αf)∧(ξ) = (iξ)αf̂(ξ).

This comes from the fact that∫
Rd

(
∂

∂xk
f(x)

)
e−ix·ξdx,

so we integrate by parts, use Fubini in Rd and induct on |α|.

5. For f ∈ C∞0 ,

(Xβf(x))∧(ξ) = (i∂ξ)
β f̂(ξ),

where

xβ =

d∏
j=1

x
βj
j , (i∂ξ)

β = i|β|∂β.

6. For f ∈ C∞0 ,

(∂αx f)∧(ξ) = (iξ)αf̂(ξ).

7. If L ∈ GL(d), L : Rd → Rd, linear invertible, then for all f ∈ L61,

(f ◦ L)∧(ξ) = | det(L)|−1f̂ ◦ ((L∗)−1)(ξ).

The proof follows from the substitution x = L−1(y) and (L−1)∗ = (L∗)−1

Corollary 4.1

V = {f ∈ (L1 ∩ L2)(Rd) : ∃A = Af <∞, |f̂(ξ)| ≤ Af 〈ξ〉−d}

is dense in L2(Rd).

15
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Proof. We showed last time that C∞0 is dense in L2(Rd). We need to show that f ∈ C∞0
implies that f̂(ξ) = O(〈ξ〉−N ) for all N ≤ ∞.

WLOG, assume ξ 6= 0, ξd 6= 0, |ξd| ≥ |ξ|d . Then,∫
f(x)e−ix·ξdx = (−iξd)−1

∫
f(x)

∂

∂xd
(e−ix·ξ)dx

= (−iξd)−1

∫
Rd

∂f

∂xd
(x)e−ix·ξdx ≤ ∞.

We can pick up as many factors of ξd as we’d like to get arbitrary bounds.

§4.2 The Gaussian

Fact 4.2. (d ≥ 1) Take e−z|x|
2/2 = f(x) = fz(x). Assume Re(z) ≥ 0→ fz ∈ L1.

(e−z|x|
2/2)∧(ξ) = (2π)d/2z−d/2e−|ξ|

2/(2z).

We consider z−d/2 in the principal branch. When z = 1, (e−|x|
2/2)∧(ξ) = (2π)d/2e−|ξ|

2/2.
Note the fact

I =

∫ ∞
−∞

e−x
2/2dx =

√
2π.

In order to calculate ∫
R
e−x

2/2e−ixξdx,

we have

x2/2 + ixξ =
1

2
(x2 + 2ixξ) = 1/2(x+ iξ)2 + ξ2/2,

so

e−ξ
2/2

∫
R
e−(x+iξ)2/2 = e−ξ

2/2
√

2π.

If F (x) =
∏d
j=1 fj(xj), then F̂ (ξ) =

∏d
j=1 f̂j(ξj).

For z ∈ R+, e−z|x|
2/2 = e−|L(x)|2/2, where

L(x) = z1/2x.

Then, we use (f ◦ L)∧(ξ) = |det(L)|−1f̂((L∗)−1(ξ)). For Re(z) ≥ 0,∫
f(x)e−ix·ξdx =

∫
e−z|x|

2/2e−ix·ξdx.

We claim that this is a homomorphic function of z in Re(z) > 0.

Fact 4.3. If f ∈ L1(Rd) and f̂ ∈ L1, then

f = (2π)−d(f̂)∨, ǧ(x) =

∫
g(ξ)eix·ξdξ.

Corollary 4.4

If f ∈ L1, f̂ = 0, then f = 0 almost everywhere.

16
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Proof. Given f, f̂ ∈ L1. Let ϕ ∈ C∞0 with
∫
ϕ = 1. Let ϕn(x) = ndϕ(nx). Define

fn = f ∗ ϕn. We know that fn → f in L1 as n→∞.
Moreover, fn ∈ L2, since fn ∈ L1 ∗ L2. For each n, we have

‖(2π)−d
∫
|ξ|≤R

f̂n(ξ)eix·ξdξ − fn(x)‖L2 → 0,

as R→∞.
Note that

f̂n(ξ) = f̂(ξ)ϕ̂n(ξ) = f̂(ξ)ϕ̂(n−1ξ).

As n→∞, ϕ̂(n−1ξ)→ ϕ̂(0) =
∫
ϕ = 1. Hence,

f̂n(ξ)→ f̂(ξ).

Furthermore ∫
|ξ|≤R

f̂n(ξ)eix·ξdξ →
∫
Rd
f̂n(ξ)eix·ξdξ,

since f̂n ∈ L1 as R→∞.
Hence, we have that

(2π)−d
∫
Rd
f̂(ξ)ϕ̂(n−1ξ)eix·ξdξ = fn(x),

in the L2 norm. Now, letting n→∞, fn = f ∗ ϕn → f in the L1 norm.∫
Rd
f̂(ξ)ϕ̂(n−1ξ)eix·ξdξ →

∫
Rd
f̂(ξ)eix·ξdξ = (f̂)∨(x),

by the dominated convergence theorem. Thus,

f(x) = (2π)−d(f̂)∨(x).

But we actually proved a stronger result: g ∈ L1 =⇒ ǧ ∈ C0, so if g = f̂ , (f̂)∨ ∈ C0 if
f ∈ L1, so if f, f̂ are in L1, then f agrees almost everywhere with (2π)−d(f̂)∨ ∈ C0.

Example 4.5

Take f(x) = 1[0,1](x). Hence f̂ 6∈ L1. Essentially, we have that |f̂(ξ)| ≈ 1
|ξ| as

|ξ| → ∞.

§4.3 Schwartz Spaces

Definition 4.6 (Schwartz Space).

S = S (Rd) = {f : Rd → C, f ∈ C∞,∀N,α, x 7→ 〈x〉N ∂
αf

∂xα
is bounded.}.

It is clear that S is a vector space over C. Furthermore, S is a topological vector
space.

The topology on S is defined by a countable family of seminorms.

‖f‖M,N = sup
x∈Rd
〈x〉N

∑
0≤|β|≤M

∣∣∣∣∂βf∂xβ
(x)

∣∣∣∣ .
17
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We have that f ∈ S if and only if f ∈ C∞ and for all M,N ∈ N, ‖f‖M,N <∞.
A neighborhood base for the topology at g would be

V (g,M,N, ε) = {f ∈ S : ‖f − g‖M,N < ε}.

Note that if ρn is a metric,
∞∑
n=1

2−n
(

ρn
1 + ρn

)
is also a metric, but it wouldn’t preserve the vector space condition. Next time, we will
prove the following theorem:

Theorem 5

∧ : S → S is a linear, bijective homeomorphism.

18
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§5 September 10th, 2020

§5.1 Schwartz Space, continued

Last time, we introduced the Schwartz space,

S = S (Rd) = {f ∈ C∞ : ∀M,N‖f‖M,N <∞},

‖f‖M,N = sup
x
{〈x〉M

N∑
|α|=0

∣∣∣∣∂αf∂xα

∣∣∣∣}.
An equivalent formulation is xβ∂αf is bounded for all α, β.

Theorem 6

The fourier transform, ∧ : S → S is a linear, bijective homeomorphism.

Proof. Note that if f ∈ S , then f̂ ∈ C∞. This is clear since

∂αξ

∫
f(x)e−ix·ξdx =

∫
f(x)∂αxi(e

−ix·ξ)dx.

Hence f · 〈x〉N is in L1 for all N .
Note the following identities:

(∂αx f)∧ = (iξ)αf̂(ξ), (xβf)∧ = (i∂xi)
β f̂(ξ),

which can be verified from repeated integration by parts.
We claim that ξβ∂αξ f̂ is bounded for all α, β. Moreover, there exists M,N such that

sup
xi
|ξβ∂αf̂(ξ)

ξ | ≤ Cα,β‖f‖M,N .

Note that

|ξβ∂αf̂(ξ)
ξ | = |(∂βxxαf)∧(ξ)|,

so

sup
xi
|ξβ∂αf̂(ξ)

ξ | ≤ ‖(∂βxxαf)∧(ξ)‖L1 ≤ Cd sup
x
|〈x〉d+1∂βx (xαf)|.

By the Leibniz rule, we can commute ∂βx , which gives the result.
Hence, we have proved that Ŝ ⊂ S , and ∧ : S → S is continuous. and the same

holds for f 7→ f̌ , so f ∈ S ⇒ f ∈ L1 and f̂ ∈ L1, so ∧ is 1-1 on § and ∨ is onto, so we
get that ∧ is onto.

§5.2 Tempered Distributions

We will consider the dual of the Schwartz space,

S ′ = {ϕ : S → C, linear and continuous}.

Recall, continuity by definition is given by the existence of M,N,C <∞ so that for all
f ∈ S , |ϕ(f)| ≤ C‖f‖M,N .
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Example 5.1 (Dirac Mass)

We can take ϕ(f) = f(0), the dirac mass. We can also take ϕ(f) = ∂αf(y0).
Let µ be a complex Radon measure, h ∈ L1

loc,
∫
|x|≤R |h|dx ≤ Ch〈R〉Ah . We can

define

ϕ(f) =

∫
∂αf(x) · h(x)dµ(x) ∈ C.

Theorem 7

Every ϕ ∈ S ′ is a finite linear combination of f 7→
∫
∂αf · hdµ, with h, µ, α as

before.

The proof is left as an exercise. The key ingredient is the Riesz Representation theorem
and the Hahn-Banach theorem.

S ′ is given a weak topology: a neighborhood hood base of ϕ ∈ S ′ is given by choosing
J , a finite index set, ε > 0 and fj ∈ S (j ∈ J). Then

V = {ψ ∈ S ′ : |ψ(fj)− ϕ(fj)| < ε ∀j ∈ J}.

Definition 5.2. For ϕ ∈ S ′, ϕ̂ is a map f ∈ S 7→ ϕ(f̂). Then ϕ̂ : S 7→ C is linear.
Similarly, we can define ϕ̌ : S → C, linear.

We can verify that ϕ̂ ∈ S ′. Note that

|ϕ̂(f)| = |ϕ(f̂)| ≤ Cϕ‖f̂‖M,N ≤ C ′‖f‖M ′,N ′ .

Theorem 8

∧ : S ′ → S ′ is a bijective homeomorphism.

Proof. We first show that ϕ 7→ ϕ̂ is continuous at ψ. Given V , a neighborhood of ψ: J
finite, ε > 0, fj : j ∈ J , we need to control |ϕ̂(fj) − ψ̂(fj)| < ε for every j ∈ J . The

neighborhood W = {ϕ : |ϕ(f̂j)− ψ(f̂j)| < ε∀j ∈ J} gives the desired bound.
Now we claim for all ϕ ∈ S ′, (ϕ̂)∨ = (2π)dϕ. This comes from

(ϕ̂)∨(f) = ϕ̂(f̌) = ϕ((f̌)∧) = ϕ((2π)df).

Hence ∧ is 1-1 and onto, so we conclude that it is a bijective homeomorphism.

We can define a partial derivative of a distribution, ∂αϕ, with ∂α : S ′ → S ′ continuous,
linear. This is a bit shocking: Take ϕ = h ∈ L1

loc with
∫
|x|≤R |h|dx ≤ ChR

Ah . This defines

a distribution f 7→
∫
fh = ϕ(f). That means, we have a way of essentially differentiating

anything.
Note that we have a natural map i : S → S ′ injective, where i(g)(f) =

∫
Rd fg. Then,

we take g 7→ i(g). Note that i is a continuous map.
Given some linear operator T : S → S , we want to associate an extension T̃ :

T̃ (i(g)) = i(T (g)) for all g ∈ S .
Define T ′ : S ′ → S ′, where T ′(ϕ)(f) = ϕ(T (f)). It’s easy to check that T ′ ∈ End(S ′),

but there are some bad examples.
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Example 5.3

If we take T (f) = df
dx ,
∫
f · g′ = −

∫
f ′ · g, then

T (i(g)) = −i(T (g)).

Suppose we have some T ∈ End(S ) and a transpose A ∈ End(S ) in the sense that∫
T (f)g =

∫
fA(g)∀f, g ∈ S .

For example, T = d
dx , A = − d

dx . With T,A ∈ End(S ), we can define T̃ (ϕ)(f) =
ϕ(A′(f)), which defines our extension.

Proposition 5.4

i(S ) is dense in S ′.

Definition 5.5 (Convolution for Distributions). If f ∈ S and ϕ ∈ S ′, then

ϕ ∗ f(x) = ϕ(fx), fx(y) = f(x− y).

One can show that ϕ ∗ f ∈ C∞ if f ∈ S .

Proposition 5.6

Let (ϕn) ∈ S ′. If ϕn → ϕ in S ′, then ϕnf → ϕ(f)∀f ∈ S .

Proposition 5.7

Let (ϕn) ∈ S ′. If ϕn → 0 in S ′. Then there exists M,N <∞ such that for all n
and for all f ∈ S ,

|ϕn(f)| ≤ Cn‖f‖M,N ,

and Cn → 0 as n→∞.

The proof uses the Baire Category Theorem. Recall S is a complete metrizable space,
where we define a norm from ∑

M,N

2−M−N
‖f‖M,N

1 + ‖f‖M,N
.

For d ≥ 1, define g(x) = e−iλ|x|
2/2, λ ∈ R. Note that g ∈ L∞, |g| ≡ 1.

We define ĝ(ξ) = (2π)d/2(iλ)−d/2e−i|ξ|
2/(2λ), for λ 6= 0. If we take g 7→ i(g) ∈ S ′, note

that (i(g))∧ = i, so we are in fact doing a normal fourier transform.
Define gz(x) = e−zλ|x|

2/2, for z ∈ C, Re(z) ≥ 0. We claim that as z → iλ, gz → g in
the topology of S ′. Furthermore, ∫

fgz →
∫
fg

for all f ∈ S by the dominated convergence theorem, with dominator |f |, since |gz| ≤ 1,
|g| ≡ 1.
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We know that ĝz → ĝ in S ′ as z → iλ. Note that

ĝz(ξ) = (2π)d/2z−d/2e−|ξ|
2/(2z).

If Re(z) > 0, then gz ∈ S .
Then as z → iλ,

(2π)d/2z−d/2e−|ξ|
2/(2z) → (2π)d/2(iλ)−d/2e−|ξ|

2/(2iλ).

So ĝz → ĝ in S ′, so we have the result.
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§6 September 15th, 2020

§6.1 Poisson Summation Formula

Define F (f)(ξ) =
∫
Rd f(x)e−2πix·ξdx. We have that ‖F (f)‖L2 = ‖f‖L2 for all f ∈

L2 ∩ L1.

Theorem 9

For all f ∈ S , ∑
n∈Zd

F (f)(n) =
∑
k∈Zd

f(k).

This has a nice interpretation: suppose we define δn(g) = g(n). We have δn ∈ S ′,
and

F

∑
n∈Zd

δn

 =
∑
k∈Zd

δk.

Proof. Given f ∈ S , set g : Rd/Zd → C, defined by g(x) =
∑

n∈Zd f(x+ n). Note that
g is periodic: g(x+ ej) = g(x) for all 1 ≤ j ≤ d.

g(x) =
∑
k∈Zd

(∫
g(y)e−2πik·ydy

)
eik·x.

Note that∑
n

f(n) = g(0) =
∑
k

∫
e−2πik·y

∑
n

f(y + n)dy

=
∑
k

∫
[0,1]d

∑
n

e−2πik·(y+n)f(y + n) =
∑
k

∫
Rd
f(u)e−2πik·udu =

∑
k

f̂(k).

Because f is a Schwartz function, all these series converge and we can easily swap sums
and integrals.

Example 6.1

There are lots of functions that are their own Fourier transforms. Take xne−x
2/2, for

n ∈ Z≥0. Apply Gram-Schmidt in the order of Z≥0. We get an orthonormal basis

Pn(x)e−x
2/2, where Pn = cnx

n +O(|x|n−2).
If n ≡ 0 (mod 4),

(Pne
−x2/2)∧ = (2π)1/2Pne

−x2/2.

§6.2 Size of Fourier Coefficients

Remark: If f ∈ Ckc (Rd) or Ck(Td), then

f̂(ξ) = O(〈ξ〉−k).

This comes from
(
∂f
∂xj

)
ξ̂ = iξj f̂(ξ).

23



Vishal Raman (October 13, 2020) Math 258

We can have a stronger bound,

〈ξ〉kf̂ ∈ L2, `2.

The proof is the same since ξαf̂ ∈ L2/`2 whenever 0 ≤ |α| ≤ k.
Recall the class

Lip =

{
f : Rd → C : sup

x 6=y

|f(x)− f(y)|
|x− y|

<∞

}
.

Proposition 6.2

Assume f ∈ Lip and has compact support. Then,

f̂(ξ) = O(〈ξ〉−1),

〈ξ〉f̂ ∈ L2.

Proof. We have f ∈ C0
0 (Rd) ∩ Lip. Assuming ξ 6= 0,

f̂(ξ) =

∫
f(x)e−ix·ξdx =

1

2

∫
f(x)e−ix·ξdx+

1

2

∫
f(x+

π

ξ
)e
−i(x+π

ξ
)ξ
dx.

Since e−i(π/ξ)ξ = −1, we have

1

2

∫
[f(x)− f(x+ π/ξ)]e−ix·ξdx.

Because f is Lipschitz, f(x)− f(x+ π/ξ) ∈ O(|ξ|−1), so it’s clear the whole integral is
bounded.

Definition 6.3 (Holder Class). Define Λα(0 < α < 1), as f : supx 6=y
|f(x)−f(y)|
|x−y|α <∞.

Note that α > β ⇒ Λα ⊂ Λβ. Furthermore Lip ⊂ Λα.

We can state a similar proposition as above for Holder classes.

Example 6.4

Let 0 < α < 1,

f(x) =

∞∑
n=0

2−nαei2
nx.

The function f ∈ Λα, but not Λβ for any β > α, since f̂(2n) = (2n)−α.

Let f ∈ Lip ∩ C0
0 . Claim f ′ ∈ L∞ in the S ′ sense. In other words, there exists g ∈ L∞

such that
∫
fϕ′ = −

∫
gϕ for all ϕ ∈ S .

The claim immediately implies that ξf̂(ξ) ∈ L2, since ĝ ∈ L2 = iξf̂ and has compact
support.

lim
t→0

∫
f(x)

ϕ(x+ t)− ϕ(x)

t
dx = lim

t→0

∫
f(x)− f(x− t)

t
ϕ(x)dx
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Let ft = fracf(x)− f(x− t)t. Note that ft ∈ L∞(R) and L∞ = (L1)∗, so by Alouglu’s
theorem, there exists a sequence tν → 0 and g ∈ (L1)8 with ft → −g in the weak star
topology.

Therefore,
∫
ftνϕ→ −

∫
gϕ as ν →∞. Thus,

∫
fϕ′ = −

∫
gϕ.

Example 6.5

Take

f(x) =
∞∑
n=0

2−nαei2
nx

with α = 1. f is not Lipschitz, since∑
ξ=2n

|ξ||f̂(ξ)| =
∑
n

1 =∞.

Remark: For α < 1, f is nowhere differentiable.

Example 6.6

Take f ∈ BV (R1) with compact support, the class with bounded variation. Then
|f̂(ξ)| ≤ πV (f)|ξ|−1.

Lemma 6.7 (Riemann-Lebesgue Lemma)

If f ∈ L1(Rd) or (Td)(then f̂ ∈ C0 bounded), then |f̂(ξ)| → 0 as |ξ| → ∞.

Proof. Note that

f̂(ξ) =
1

2

∫
Rd

(f(x)− f(x+
πξ

|ξ|2
))e−ix·ξdx

Then

|f̂(ξ)| ≤ 1

2
‖f(x)− f(x+

πξ

|ξ|2
)‖L1 → 0.

How fast do they go to zero? Is there a quantitative bound? (Nope) How do we

characterize L̂1? Is C0
→0 = (L1)∧? (Nope).

Proposition 6.8

The map ∧ : L1(Rd)→ C0
→0(Rd) is not onto. Equivalently, ∨ : C0

→0(Rd) 6→ L1.

Proof. ∧ : L1 → C0
→0 is linear, bounded, and an injective mapping between Banach

spaces. We can apply the Open Mapping Theorem: if the map was onto, there would
exist A <∞ such that ‖f‖L1 ≤ A‖f̂‖C0 .

We claim that
‖f̂‖C0
‖f‖L1

can be arbitrarily small. Define ft(x) = e−(1+it)|x|2/2 for t ∈ R
going to ∞.
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We know that

f̂t(ξ) = (2π)d/2(1 + it)−d/2e−(1−it)|ξ|2/(2(1+t2)).

Hence,

|f̂t| = (2π)d/2(1 + t2)−d/4e−|ξ|
2/(2(1+t2)) ≤ (2π)d/2(1 + t2)(−d/4)→ 0.

On the other hand ‖ft‖L1 is independent of t.

Theorem 10

Let w : Rd → (0,∞) and w(ξ)→ 0 as |ξ| → ∞. There exists f ∈ L1 with

|f̂(ξ)| ≥ w(ξ)∀ξ.

Proof. We have a key lemma: Let w : R1 → (0,∞) continuous, even, piecewise, C2(R \
{0}), convex on (0,∞) with compact support. Then, ŵ ∈ L1 and ŵ ≥ 0, hence,
‖ŵ‖L1 =

∫
ŵ = (2π)dw(0).
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§7 September 17th, 2020

§7.1 Size of Fourier Coefficients, continued

Theorem 11

Let w : Rd → (0,∞) and w(ξ)→ 0 as |ξ| → ∞. There exists f ∈ L1 with

|f̂(ξ)| ≥ w(ξ)∀ξ.

Proof. We have a key lemma:

Lemma 7.1

Let w : R1 → (0,∞) continuous, even, piecewise C2(R \ {0}), convex on (0,∞) with
compact support and nondecreasing. Then, ŵ ∈ L1 and ŵ ≥ 0, hence,

‖ŵ‖L1 =

∫
ŵ = (2π)dw(0).

Proof. Note that

ŵ(ξ) =

∫
R
w(x)e−ix·ξdx =

∫
R
w(x) cos(xξ)dx.

Furthermore, note that |x| · |w′(x)| is a bounded function(as x → 0). It follows from
Jensen’s inequality.

ŵ(ξ) = 2

∫ ∞
0

w(x) cos(xξ)

= 2ξ−2

∫ ∞
0

w′′(x)(1− cos(xξ))dx ≥ 0.

It suffices to show the equality
∫∞

0 w(x) cos(xξ) = ξ−2
∫∞

0 w′′(x)(1 − cos(xξ)). We
integrate by parts twice:

ŵ(ξ) = 2

∫ ∞
0

w′(x)ξ−1 sin(xξ)dx

= 2

∫ ∞
0

w′′(x)ξ−2(1− cos(xξ))dx.

We might have issues at 0, but we can take a limit for integrating from ε to ∞ with
boundary terms w′′(ε)(1− cos(εξ)) ∈ O(ε2). Hence, ŵ ≥ 0.

Note that ŵ ∈ L1 and for |ξ| ≥ 1,

|ŵ(ξ)| ≤ 2ξ−1

∫ ∞
0
|w′′(x)|dx · 2

. Assume |w′(0)| <∞, where the derivative is the right-hand derivative at 0.
Then ∫ ∞

0
w′′(x)dx = −w′(0)
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so it follows that ŵ ∈ L1.
Finally,

w(0) = (2π)−1(ŵ)∨(0) = (2π)−1

∫
ŵ(ξ)dξ = (2π)−1‖ŵ‖L1 ,

which gives the desired bound.

Let g : R→ [0,∞] continuous, with g(ξ)→ 0 as ξ →∞.

Lemma 7.2

There exists w : R→ (0,∞) so that w ≥ g and w is even, convex on (0,∞), w(ξ)→ 0
as |ξ| → ∞, and w is piecewise C2, where we may have infinity many breaks.

To prove the theorem, it suffices to find a function f ∈ L1 such that f̂(ξ) ≥ w(ξ) for all ξ.
WLOG, g is even(replace g(ξ)+g(−ξ)), nonincreasing(we can replace g̃(x) = supy≥x g(y)

for x ≥ 0). Note that w̌(ξ) = ŵ(−ξ) so define f = ŵ. f̂ = (2π)w ≥ 2πg.
To treat w, we approximate it with functions of compact support. Let t > 0 and define

wt = max(w − t, 0). We conclude that ŵt ∈ L1 and ‖ŵt‖L1 = (2π)wt(0). As t → 0+,
wt → w in S ′ so ŵt → ŵ in S ′. We have that ŵ is a complex radon measure.

Fact 7.3. If µ is a complex Radon measure and if µ|R\0 is absolutely continuous, then
µ = cδ0 + h for h ∈ L1.

We know that w(ξ) → 0 as |ξ| → ∞ and µ̂(ξ) = c + ĥ(ξ) so c = 0 and ŵ ∈ L1 as
desired.

§7.2 Comparing Size of Functions to Size of Fourier Coefficients

We have that ‖f̂‖L2 = (2π)−d/2‖f‖L2 and ‖f̂‖C0 ≤ ‖f‖L1 .

Theorem 12 (Hausdorff-Young)

Let p ∈ [1, 2]. The n f ∈ LP (Rd) implies that f̂ ∈ L1 for q = p′ = p
p−1 , and

‖f̂‖q ≤ C(p, d)‖f‖p.

For Td,
‖f̂‖`q ≤ C(p)d‖f‖Lp(Td).

Note that for Rd, ∧ : Lp → Lr is bounded.

Proof. We must have that r = p′. Fix a function 0 6= f ∈ S . Define ft(x) = f(tx) for
t ∈ R+.

f̂t(ξ) = t−df̂(t−1ξ).

Note that

‖ft‖pp =

∫
|f(tx)|pdx = t−d

∫
|f(y)|pdy = t−d‖f‖pp.

Then ‖f̂t‖r = t−dtd/r‖f̂‖r, so

‖f̂t‖r
‖ft‖p

= tγ
‖f̂‖r
‖f‖p
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where γ = −d+ d/r + d/p. We must have that γ = 0 for the ratio to be bounded, which
gives 1 = 1

p + 1
r .

For Td, we can only take t → +∞ so γ ≤ 0, and we can only conclude that r ≥ p′.
But r ≥ p′ implies that `p

′ ⊂ `r, so ∧ : Lp → `p
′ ⊂ `r.

Theorem 13 (Riesz-Thoren)

Let (X,µ), (Y, ν) be σ-finite measure spaces. Suppose we have exponents p0, p1, q0, q1 ∈
[1,∞]. Let S(X) be the set of simple functions from X → C. Assume T : S(X)→
(L1 + L∞)(Y ) is linear and there exists A0, A1 <∞ so that for all f ∈ S(X),

‖Tf‖Lqj ≤ Aj‖f‖Lpj .
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§8 September 22nd, 2020

§8.1 Comparing Size of Functions to Size of Fourier Coefficients, continued

Recall

Theorem 14 (Riesz-Thoren)

Let (X,µ), (Y, ν) be σ-finite measure spaces. Suppose we have exponents p0, p1, q0, q1 ∈
[1,∞]. Let S(X) be the set of simple functions from X → C. Assume T : S(X)→
(L1 + L∞)(Y ) is linear and there exists A0, A1 <∞ so that for all f ∈ S(X),

‖Tf‖Lqj ≤ Aj‖f‖Lpj .

We will prove this later, with an elegant application of complex analysis.
Remark: (Rd) Is it true that L̂p ⊂ Lq (2 < p, q = p′)? No. We sketch the proof.

Suppose it was true. For f ∈ Lp with ‖f‖p ≤ 1, define `f ∈ (Lq
′
)∗ by

`f (g) =

∫
gf̂ .

This defines a bounded linear functional as desired. We claim that {`f} is pointwise
bounded. Then, by the Uniform Boundedness Principle, it follows that `f are uniformly
bounded. We know that

‖`f‖(Lq′ )∗ = ‖f̂‖L(q′)′ = ‖f̂‖Lp

by the Reverse Holder’s Inequality. This would give the desired inequality.
Finally,

`f (g) =

∫
gf̂ =

∫
ĝf,

and ĝ ∈ Lq. Then

|`f (g)| = |
∫
ĝf | ≤ ‖ĝ‖q‖f‖p ≤ ‖ĝ‖Lq .

§8.2 Rademacher Functions

Theorem 15 (Kahane)

If a ∈ `2, there exists f ∈ L∞ such that for all n, |f̂(n)| ≥ |an|.

We prove a weaker result.

Theorem 16

For Td, d ≥ 1. For any a ∈ `2, there exists f ∈ ∩p<∞Lp such that for all n ∈ N,

|f̂(n)| = |an|

We will use Rademacher Functions: rn : [0, 1] → {−1, 1}, with n ≥ 0. We let
r0(x) = 1, for rn, we split [0, 1] into 2n intervals and alternate between 1 and −1.Note
that ‖rn‖L2([0,1]) = 1. If n > m, then∫

rnrmdx = 0.
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Lemma 8.1

For aj ∈ {1, 2, 3, . . . }, ∫ 1

0

N∏
j=1

r
aj
njdx = 0,

unless every aj is even.

We can now form a Rademacher Series:

f(x) =
∞∑
n=0

cnrn(x).

If c ∈ `2, then f ∈ L2 and ‖c‖`2 = ‖f‖L2 .

Theorem 17 (Khinchine’s Inequality)

If c ∈ `2 then f ∈
⋂
p<∞ L

p. For all p, q ∈ (0,∞), there exists Ap,q <∞ such that
for all c, ‖f‖Lq ≤ A‖f‖Lp .

Proof. WLOG, p = 2q.∫
|f |2q =

∫
f qf

q
=

∫ ∑
n1,...,nq

q∏
j=1

cnjrnj
∑

m1,...,mq

q∏
i=1

cmirmi .

which is ∑∑∫ 1

0
(

q∏
j=1

rnj )(

q∏
i=1

rmi)dx.

If the n’s and m’s are pairwise distinct, we bounded it above by q!‖c‖2q
`2
≤ Cqqq‖c‖2q

`2

in general.

§9 September 24th, 2020

§9.1 Rademacher Functions, continued

We consider Ω = [0, 1] with Lebesgue measure, a probability space. Then {rn} are
independent random variables: for N, aj = ±1. Consider B = {x ∈ [0, 1] : rj(x) = aj , j ∈
[1, N ] ∩ Z, rN+1(x) = 1}. Then,

µ(B)

µ({x : rj(x) = aj})
=

1

2
.

We were proving the following theorem:

Theorem 18

For Td, d ≥ 1. For any a ∈ `2, there exists f ∈
⋂
p<∞ L

p such that for all n ∈ N,

|f̂(n)| = |an|.
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Proof. We have Khinchine’s Inequality: For all p <∞, there exists Cp <∞ such that∥∥∥∥∥
∞∑
n=1

cnrn

∥∥∥∥∥
Lp

≤ Cp‖c‖`2 .

We are given a ∈ `2 and we want f ∈ Lp(Td) : |f̂(n)| = |an| for all n.
Define

fω(x) =
∑
n∈Zd

rn(ω)ane
in·x, ω ∈ [0, 1] = Ω.

We know that fω ∈ L2(Td). Consider∫
Ω
‖fω‖pLp(Td)

dω =

∫
Td

∫
Ω

∣∣∣∣∣∑
n

rn(ω)ane
in·x

∣∣∣∣∣
p

dωdx

≤
∫
T d
Cpp‖a‖

p
`2
dx

= (2π)dCpp‖a‖`2 .

Hence, the average
∫

Ω ‖fω‖
p
Lpdω <∞, so for almost every ω ∈ Ω, fω ∈ Lp.

Hence, for any p,
|f̂ω(n)| = |rn(ω)an| = |an|.

Finally, we can take p = 2, 4, 6, . . . , so that the set of all bad ω is a countable union of
Lebesgue null sets.

For almost every ω, fω ∈
⋂
p<∞ L

p and |f̂ω(n)| = |an| for all n.

§9.2 Convergence of Fourier Series for 1-dimensional Tori

Recall

f̂(n) = (2π)−1

∫ π

π
f(x)e−in·xdx,

where we identify π1 = [−π, pi].
The partial sums

SNf(x) =
N∑

n=−N
f̂(n)einx = f ∗Dn(x) = (2π)−1

∫
f(x− y)Dn(y)dy,

and recall that

DN (x) =

N∑
−N

einx =
sin((N + 1/2)x)

sin(x/2)

if x 6= 0, or 2N + 1 if x = 0. Note that DN (x) ∈ C∞, so there are no issues with
singularities at 0.
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Note that

1

2π

∫ π

−π
DN (x)dx =

1

2π

∫ π

−π

N∑
n=−N

einxdx = 1.

However, ‖DN‖L1 = Ω(log(N)), so we don’t have an approximate identity sequence.

Proof. Let M = N + 1
2 .∫ 2(k+1)2π/M

2k2π/M

| sin(Mx)|
| sin(x/2)|

dx ≥
∫ 2(k+1)2π/M

2k2π/M

2| sin(Mx)|
|x|

dx

≥ 2−k
M

2π

∫ 2(k+1)2π/M

2k2π/M
| sin(Mx)|dx

= 2−k
1

2π

∫ 2(k+1)2π

2k2π
| sin(y)|dy

= C02−k2k = C0.

So ‖Dn‖ = Ω(logN).

Theorem 19

There exists a function f ∈ C0(Π1) such that SNf(0) 6→ f(0) (and {SNf(0)}
unbounded).

Proof. Suppose for all f ∈ C0, {SNf(0)} is bounded.

`N (g) = SNg(0) =
1

2π

∫ π

−π
g(−y)DN (y)dy,

so `N ∈ (C0(T1))∗. By the Uniform Boundedness Principle, `N is uniformly bounded:

‖`N‖(C0)∗ =
1

2π
‖DN‖1 <∞.
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Theorem 20

Let f ∈ L1(T), x0 ∈ T, a ∈ C. If∫
T
|f(x)− a||x− x0|−1dx <∞,

then SNf(x0)→ a.

Proof. Let g(x) = f(x − x0) and reduce to the case where x0 = 0. Similarly, g(x) =
f(x)− a reduces to the case where a = 0.

So
∫
|f(x)||x|−1 <∞, and we want SNf(0).

2πSNf(0) =

∫ π

−π

f(x)

sin(x/2)
sin((N + 1/2)x)dx].

So we have

I =

∫ π

−π
g(x)eiNxdx→ 0,

by the Riemann-Lebesgue Lemma.

Corollary 9.1

If α > 0, then SNf(x)→ f(x) for all x for all f ∈ Λα.

Theorem 21

Let α ∈ (0, 1). There exists Cα <∞ so that for every f ∈ Λα(T), and for all N ,

‖SNf − f‖C0 ≤ CαN−α log(N + 2)‖f‖Λα

Proof. We can reduce to SNf(0)− f(0), f(0) = 0.
‖f‖Λα has norms:

sup
x 6=y

|f(x)− f(y)|
|x− y|

.

2πSNf(0) =

∫ π

−π
f(x)

sin(Mx)

sin(x/2)
,M = N + 1/2

Then ∣∣∣∣∣
∫
|x|≤δ

f(x)DN (x)

∣∣∣∣∣ ≤
∫
|x|≤δ

|x|α‖f‖Λα
2

|x|
dx = Cα‖f‖Λαδα,
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and∫ π

δ

f(x)

sin(x/2)
eiMxdx =

∫ π

δ
g(x)eiMxdx

=
1

2

∫ π

δ
g(x)eiMx − 1

2

∫ π+π/M

δ+π/M
g
(
x− π

M

)
eiMxdx

=
1

2

∫ π

δ
[g(x)− g(x− π/M)]eiMxdx± 1

2

∫ δ+π/N

δ
g(x− π/M)eiMxdx

± 1

2

∫ π+π/M

π
g(x− π/M)eiMx
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§10 September 29th, 2020

I missed this lecture. The notes will be updated upon reviewing the lecture notes.
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§11 October 1st, 2020

§11.1 Cesaro Means and Kernels

We are discussion functions f : T → C. We defined the Cesaro Means σNf =
(n+1)−1

∑N
n=0 Snf . We showed that σNf = f ∗Dn(we used the Normalization: f ∗g(x) =

1
2π

∫
f(x− y)g(y)dy, so that f̂ ∗ g = f̂ · ĝ.)

Then

σnf = f ∗KN , K̂N (n) =

{
1− |n|/(N + 1), |n| ≤ N + 1

0, else
.

We also have f ∗ VN , where VN = K2N+1−KN . Note that ‖Vn‖1 ≤ 3. Note that these
form an approximate identity sequence. This is nice because it is even stays exactly at
1from 0 until N + 1 and decreases linearly to 0. Hence V̂N (n) ≤ 1 for all |n| ≤ N + 1.
Then

f̂ ∗ VN (n) = f̂(n), |n| ≤ N + 1.

We also have Poisson Kernels, where 0 ≤ r < 1,

Pr(x) =
∞∑

n=−∞
r|n|einx =

1− r2

1− 2r cos(x) + r2
.

The denominator is 0 if only if cos(x) = 1 and r = 1, but r < 1 and cos(x)⇔ x = 0. One
can show that this is an approximate identity family.

Note that
̂f ∗ Pr(n) = f̂ · r|n| |n|→∞−−−−→ 0.

This is in effect like a partial sum, but instead a weighted average.
Also note the Dirichlet problem: Given |z| < 1, we would like to find u such that{

∆u = 0, |z| < 1

u(eiθ) = f(θ), |z| = 1

Let z = reiθ, with the natural parameterization. Then,

u(reiθ) =
∞∑

n=−∞
f̂(n)r|n|einθ.

Note that r|n|einθ = zn if n ≥ 0 and r|n|einθ = z−n if n < 0. We can verify that ∆u = 0
for r < 1. On the boundary, we have exactly u(eiθ) = f(θ).

As a final remark, note that for f ∈ L2, f ∗KN → f in L2. But f ∗KN =
∑
|u|<N+1(1−

|n|
n+1)f̂(n)einx, which is a finite linear combination of the characters. Hence, we have a
corollary:

Corollary 11.1

span{einx : n ∈ Z} is dense in L2(T).
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§11.2 Proof of Kolmogorov’s Theorem

Theorem 22 (Kolmogorov)

There exists f ∈ L1(T) so that (Snf(x) : N ∈ N) diverges for almost every x ∈ T.

Proof. We show that there exists f ∈ L1 so that lim supN→∞ |SNf(x)| = ∞ almost
everywhere. If we took f ∗Dn, we can make the convolution large at a point, but it’s
difficult to make the sup large over many x.

We wish to find gj so that ‖gj‖1 = 1 and supN |SNgj | is large for many x. We then
form

∞∑
j=1

2−jgj ,

which will converge in L1, but the partial sums will get large.

Lemma 11.2

For any A <∞, there exists a Borel probability measure µ on T so that for almost
every x ∈ T, supN |SN (µ)(x)| ≥ A.

Proof. Note that SN (µ)(x) =
∑
|n|≤N µ̂(n)einx where µ̂(n) = 1

2π

∫
e−inxdµ(x).

Let M < ∞. Take [−π, π] and place M almost equally space points yj , so that
|yj − 2πj

M | <
2π
4M and {yj} ∪ {1} are linearly independent over Q. We choose µ =

M−1
∑M

j=1 δyj .
Then

2πSN (µ)(x) = M−1
M∑
j=1

DN (x− yj)

= M−1
∑
j

sin((N + 1/2)(x− yj))
sin(1/2(x− yj))

.

Suppose {yj : 1 ≤ j ≤ m} ∪ {1} ∪ {x} is linearly independent over Q. For each such x,
we claim there exists N so that |SN (µ)(x)| ≤ c0 log(M).

Choose N such that for every j, the sign of the numerator is the sign of the denominator,

and the magnitude of the numerator is at least 1/2 for all j. We want that
N(x−yj)

2π −
(− 1

4π (x− yj)) is approximately some prescribed value modulo Z. Hence, we would like

{x−yj2π : 1 ≤ j ≤M} ∪ {1} to be linearly independent on Q.
Then, recall Kroneker: if {tj : 1 ≤ j ≤ M} ∪ {1} are independent over Q, then for

any sj ∈ R, ε > 0, there exists n ∈ Z so that ‖ntj − sj‖ (mod Z) < ε, where (mod Z) is
distance to the nearest integer.

Then,

(2π)SN (µ)(x) ≥ 1

2M

∑
j

1
1
2 |x− yj |

≥ CM−1
M∑
j=1

|x−yj |−1 ≤ CM−1

M/2∑
j=1

(j/M)−1 = log(M).
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Lemma 11.3

For every A < ∞, ε > 0, there exists K < ∞ and µ, a probability measure, then
supN≤K |SN (µ)(x)| ≥ A for all x ∈ T \ E for |E| < ε.

Lemma 11.4

For all A <∞, ε > 0, there exists K and a trignometric polynomial so that ‖g‖1 ≤ 1
and supN≤K |Sn(g)(x)| ≥ A for all x ∈ T \ E for |E| < ε.

Proof. Let µ be a above, g = µ ∗ VK . Then ĝ(n) = µ̂(n) for |n| ≤ K. Hence, SN (g) ≡
SN (µ) whenever N ≤ K.

Then
‖g‖1 = ‖µ ∗ VK‖1 ≤ ‖VK‖1 ≤ 3.

[We replace g with g/3 to finish the proof.]

Lemma 11.5

Define S̃Nf(x) =
∑N

n=−∞ f̂(n)einx. For all A < ∞, ε > 0, there exists K < ∞ so

that there exists a polynomial g with ‖g‖ ≤ 1 and supN≤K |S̃N (g)(x)| ≥ A for all
x 6∈ E, for |E| < ε.

Lemma 11.6

In Lemma 11.5, we can achieve ĝ(n) = 0 for all n < 0.

Finally, we prove Kolmogorov’s Theorem. We have a family of gα from Lemma 11.6 .
Set

F (x) =

∞∑
j=1

2−jgαj (x)eiTjx.

We choose αj , Tj recursively. Note that ‖f‖1 < ∞. Choose Tj greater than the
largest n ∈ N so that there exists ` < j with (gα`e

iT`x)∧(n) 6= 0. The support of the
Fourier transform of gαje

iTjx lies to the right of the support of the fourier transform of∑
`<j 2−`gα`e

iT`x.

Then, we choose αj so that for all x ∈ Ej where |Ej | < 2−j , there exists N so that

|S̃Ngαj (x)| ≥ 22j +
∑
`<j

2−`‖gα`‖∞,

and S̃N (gα`)(x) = gα`(x) for ` < j.
Then

S̃N (F ) =
∑
`<j

2−`gα`(x)eiT`x + S̃N (2−jgαj (x)eiTjx) +
∑
`>j

S̃N (2−`gα`e
iT`x(x),

but the last term vanishes and the second term dominates the first.
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§12.1 Lucunary Series

We define the series Λ ⊂ Z where f(x) =
∑

n∈Λ f̂(n)einx. Rademacher series tend to be
useful when considering these types of series.

Theorem 23

(T = T1) Let δ > 0 and Λ = (nk) (1 + δ)-lacunary. For all p < ∞, there exists
C = C(p, δ) <∞ so that for all a ∈ `2,

‖
∑
k

ake
inkx‖Lp(T) ≤ C‖a‖`2 .

Proof. We show ∫
|
∑
k

ake
inkx|pdx ≤ C‖a‖l`2 .

If suffices to prove this for p = 2q, q ∈ N. Then,

∑
k1,...,kq

∑
`1,`q

q∏
j=1

akj

q∏
m=1

akm

∫ π

−π
ei(nk1+···−n`q )xdx,

where the integral is 0 unless the exponent of e is 0.
Without loss of generality, 1 + δ is large relative to q. Choose large N and k ≡ r

(mod N). Then,

Λ =

N1⋃
n=0

Λr.

It suffices to prove that ‖
∑

k∈Λr
ake

inkx‖L2q ≤ C‖a‖`2 .
We have nk1 + · · ·+ nkq = n`1 + · · ·+ n`q . Wlog, kq ≤ kq−1 ≤ · · · ≤ k1. Then nk1 is

the largest, so if `1, . . . , `q < k1, then RHS < nk1 .

Theorem 24

Let δ,Λ be as above. Let a ∈ `2, f =
∑

k ake
inkx. If f ∈ L∞, then a ∈ `1.
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