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§1 August 27th, 2020

§1.1 Introduction

We begin by considering the problem of conduction of heat in a circle. We use the
map z — e x € [0,27). Where u is the temperature, ¢ is the time, we believed that
Up = YUz, Where subscripts denote partial derivatives. We also have an initial condition,
f(z) = u(z,0). ' , 4

There are some simple solutions e"@e~"""t|,_y = ¢"*. The product of solutions, the
sum of solutions, and scalar multiple of solutions are all solutions, so he wrote the solution

as
00

flx) = Z ane™® u(x,t) = Z ane e

n=—oo n

§1.2 Fourier Analysis

We take a circle {z € C: [z = 1|}, which can also be thought of as R/(27Z), with the
map x — e, Suppose we have G a finite abelian group, and G = {hom ¢ : G — R/Z},
the dual group. G is also a group, formally known as the set of characters.

Example 1.1
If we take G = Zy = Z/NZ, with the map = e2man/N for n € Z,.
Similarly, taking G = Zn, X Zp, X ..., we take x — [] e2™@n/Ni,

Take eg(x) = *™¢@) where ¢ : G + R/Z. Working in L?(G), we note the following;
Fact 1.2. If £ # ¢, then (e¢,e,) = 0.

Proof.
> Ex)e(x) Z£u+y (uty)— (Zf ) y)p(u).
zeG
Hence, either (£, p) =0 or £(y)p(y) =1 for all y € G, which implies £ = . O

If follows that {ef : f € CA}} is an orthonormal set in L?(G) Then, the dimension is

|G| = |G| = dim(L%(G)). Hence, the set forms an orthonormal basis for L(G).
Then, for all f € L*(G), we have

£ 2 = D 1 {free) I

@EG

f: Z <fve§>€<,0

eg Gé

§1.3 On Tori of Arbitrary Dimension
We define T = R/277Z, from [0,27]. We then work on T¢, d > 1.

For f € L%(T%), we define
= (27r)d/f(at)ei"xda;.

We have an inner product (fr9) = Jpa [( dp(z) defined over a Lebesgue measure
or Euclidean measure on T¢.
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\
Theorem 1 (Parseval’s Theorem)
For all f € L2(11%),
1£172 = @m) Y 1)
nezd
and we have
f :g: f) znx
neza
in the sense that R '
If = f(n)e™| —o.
nezad
. 4

Note: you can usually figure out the constant with the simplest example, f = 1.

Proof. Take T% e,(x) = e™®. The {(2r)"%2%e™ : n € Z%} is orthonormal(left as an
exercise). Then, for all f, 3 (f, (27T)_d/26n> < |If]3,, with equality if the set is a
basis(Bessel’s inequality).

It suffices to show that span{e,} is dense in L2. Take P = span{e,}, and note that P
is an algebra of continuous functions on II¢, closed under conjugation, contains 1, and
separates points. Hence, the Stone-Weierstrass theorem implies that P is dense in C°(I1¢)
with respect to || - [[co. Then C° C L? is dense(general theory about Compact Hausdorff
spaces, Radon Measures). R

The statement || f —>,,cza f(n)e™®||2 — 0 follows from the general theory of orthonor-
mal systems. O

§1.4 Euclidean Spaces

We work in R, (d > 1). Take ¢ € R?, and z — z¢ € R is a homomorphism from R? — R,
but if we take z — €/, we have a homomorphism from R? — I'. We try to define the
following:

F©) = | @) de = {f,ee) aqaa)

where eg;(z) = /¢,
Some problems:

1. e ¢ L*(RY)
2. f(z)e™™¢ need not be in L' if f € L2
We fix this by imposing extra conditions.

Definition 1.3. For f € L'(R%), we define
F&) = [ fla)e " de.
Rd

Note that f € L' implies that J? is bounded, continuous. We see this as follows:
fle+u) = [ f(z)e "¢ (e~ —1)dx. If we let u — 0, the right goes to 0 pointwise,
and (2\f|) E L1 dommates the integral, it goes to 0.
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Proposition 1.4
If f e L' NLA(RY), f e L2(RY),

17132 = o) fI13-.

4 )
Theorem 2 (Plancherel's Theorem)

7w : L' NL? — L? extends uniquely to 7 : L2(RY) — L2?(R?), linear, bounded,
172, = (2m)?||f||2,, and for all f € L?, we have an inverse Fourier Transform,
fy) = [ f(&)e™ede for f € L' N L% and * also extends.

Finally,

If— (27r)‘d/ FOEEdE| 12 — 0.
|€|<R
\ J

Note that f(y) = f(—y).

Proof. We first prove that || f||3, = (277)_‘1”ﬂ|%2 for all f € L' N L?. We prove this for a
dense subspace & of L?. We will show later that there exists a subspace V C L?(R%)
so that V is dense in L?, V C L', Vf € V, there exists Cy < o0, so for all £ € R4,

1F(6)] < C(f(€))~¢ and f is continuous with compact support.

We are given f : R? — C supported where |z| < R = Ry < oo. For large t > 0, define
fi(x) = f(tz)(this shrinks the support of f), supported where |z| < R/t < m. We can
then think of f; : T¢ — C.

Now, we calculate

filn) = (2m)? 5 fi(z)e M dy
_4—d 7_(_d —in/ty
i [ ey
= t~4(2m) " f (¢ n),

where the first hat is on T¢ and the second is on R?, so the Fourier coeficients in the
euclidean case are scalar multiples of the Fourier coefficients in the Tori case.
Thus,

1ill2nay = £ ey = ca S 1Fam)2 = =203 (7t m) 2
nczd n
Hence,

Hf”%z(]gd) = C&t_dz ‘J?(t_ln)‘Q-

This has a nice tiling Riemann sum interpretation: if we take R? and tile it with cubes
of sidelength 1/t where one corner is at t~'n for n € Z%, then

~ 2
1 =it S [Fe )] = [ afae.

~

where g(z) = f(t~'n).
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/ gl - / 7P,
R4 R4

which follows from the dominated convergence theorem: where we take a sequence over
t going to infinity, with dominator C']%(l + €)% in L' and |f(&)] < C]%(l + &)~

Furthermore, we have g,(§) — f(ﬁ) as t — 0, and fis continuous so g; is pointwise
convergent, and we have

We claim

~

91 =1t )| < Cp(1+ [ )™ < O"(1+ [€) ™
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§2 September 1st, 2020

§2.1 Proof of Plancherel’s Theorem

Last time
° ]Rd7

N _ —ix-& da.

fo) = [ s

o V =(f€LinLy(RY) : [£(£)] (€)% is a bounded linear function, (z) = (1+|z|?)/2 >
1,= |z| for x large.

e Claim: V is dense in L2(R%). Then | f|;2 = (2m)¥2||f||2 for all f € V so there
exists a unique bounded linear operator .% on L?(R?), where .# takes a function
to it’s fourier transform.

e We discussed some properties of .%.
— |7 fll2 = 2m)*2|| f2
— % is onto.

— For all f € L?,

— 0,
L2

Hf ~ (2m) /E e

in the limit where R — oo.

First note that .# has closed range(this was an exercise). It suffices to show: If g €
L?,g L Z(f) forall f€V,then g=0.

Proof. First, note that
0=1(9,7(f)) = (F(9),f),
and for all g € V,

7gw) = [ ale)eas

Therefore, .7*(g)(x) = (ZFg)(—=x) for all g € V, which is dense in L?. Hence, .#g = 0,
and the Fourier transform preserves norms, so g = 0. ]

We also claimed the following: Let f € L?:

1f(@) - (2m) / (F 1)) g3 — 0.

[§I<R

Proof. Let g, = (2m)~¢ fmSR(ﬁf)(f)em'&d{.We have to show (f,g.) — || f||3. Then

1f = 9,13 = IF113 + llgr 13 — 2Re(f, gr) — I£13 + 1113 — 20 £113.

(f. gr) = (2m) / f(x) /|€ _FN@edsds

= (2m) 7@ x)e 4y | (F

(27) /laSR(/fu d )(Jf)(é)dﬁ

— (2m) / \F1()2de — (2m) U Z 112 = £
EISR
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However, it’s not clear that we can use Fubini’s theorem. We would need f € L' N L?.
But this is not an issue as L' N L? C L? is dense, so if we let € > 0, f = G + h, ||hl2 < €
and G € L' N L2. Showing the convergence from here is an exercise. O

~

We still need V = (f € L* N L2 : (&) (F(€)) is bounded) is dense in L2. We’ll discuss
this in the future.
§2.2 Introduction to Convolution

Our meta definition is f * g(z) = [ f(z — y)g(y)dy, but it will depend on the conditions
of the function for the 1ntegral to be deﬁned
Convolution is generally associated to a group, where

/ Fayg(w)du(y)),
G

with the Haar measure(done in 202b).
If we substitute y = z — u, then

frgla /f (x — u)du = g = f(x).

It is also associative: (f xg)* g = f*(gx*h) for all f, g, h(involves Fubini’s theorem).
We can formally write

fro@= [ fg)dru)

where \; is supported on A = {(u,v) : u+ v = A}(an affline subspace). If we have a
subset E C A, \p(E) = |m(E)| = |m2(FE)|, where m; are Lebesgue measure s of projections
on the i-th factor. Note the following: suppose that f,g are continuous with compact
support. Then supp(f * g) C supp(f) + supp(g), where A+ B ={a+b: (a,b) € A x B}.

Let T : C(RY) — CP(RY) be bounded, linear and T o1, = 7,0 T for all z € R?

(ryf(x) = f(z +y), a translation). Then, there exists a Complex Radon measure y on
RY so that for all f € CY, T(f) = f * u, where

fruta) = [ o= y)duy

In the case of T!, f(z) = >0 f(n)emx for all f € L?. Suppose we wanted to
consider the partial sums,

Z F(n)e™ = S (f)(x).
In what sense does Sy f — f, and for which functions f do we have convergence?

N x N

Sv(h@) = 3 e en [ ey = em ™ [ ) Y ey

n=—N n=—N
= @n) " [ )t - )iy,

The Dirichlet Kernels, Dy(z) = YN e = % ifx #0or Dy(z) =2N+1
itz =0.
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§2.3 General Convolution

Theorem 3
Let f,g € L'Y(R?%). Then, the following are true:

o y— f(z—y)g(y) € L'(R?) for almost every = € R%.

z+— [ f(z —y)g(y)dy is Lebesgue measurable.
frge L'RY) and [|f *glli < [I£ll1llgll1-
If f,g 2 0, then [|[fxglh= [ fxg=[f[g

The operation commutative and associative, so L! is an algebra, but it no
multiplicative identity, so no inverses.

~

° Forf,gELl,(f/*\g)Zf‘a

In other words, convolution is a nice bilinear operation.
. J

Proof. Let F(z,y) = f(z —y)g(y), F : R — C is Lebesgue measurable. We claim
that F' € L'(R? x R%). Tt follows from

/ |F(z, y)|dzdy = / (@ — 9)llg(y)|dady = / 9()ldy / F@)ldz = gl ]l < oo

Now, F € L', so by Fubini’s theorem, for almost every z,y — f(z —y)g(y) € L' and
z+ [ f(z —y)g(y)dy is Lebesgue measurable.

£+l = [ Ifsg(a)ldz = [ ‘ [ = vatwas]ds < [ [1r@-w)latw)ldvdz = 1111l

Note that [(f *g)(z)dz = ||f]l1]|g]|1, for non-negative functions.

Finally,
1200 = [ ([ 1a=natwty) i
= / (/ e T f(x — y)dx) dy,z =u+y
= [ (s twyau) o)ay

= / e Flu)g(y)dy
= f(&) - 9(§).

Example 2.1 (A Warning)
In R, f(z) = |x|_2/31|$|§, which has an asymptote at 0. f € L', and

1
(f % )(0) = / a3y = +oc.




Vishal Raman (October 13, 2020) Math 258

\
Proposition 2.2

Let p € [1,00]. Let f € L', g € LP. Then,
oy f(x —y)g(y) € L' for almost every = € RZ.

e z— [ f(z —y)g(y)dy is Lebesgue measurable.

o frge PR, |If *gll, < [Ifll1llglly.
. J

Proof. For p = oo, [ f(x —y)g(y)dy € C’O(Rd).
If 1 <p<oo, L ¢ L'+ L, as follows:

f(@) = f(@)1pa)<1 + F(@) 1 pz)>1-

We can prove the rest with Minkowski’s inequality, or a simpler way. Let ¢ = p’ = -2

-1
(hence é + 1% = 1). We use the norm definition, ’
I +glh= s /!g*f!-lh!~
/|g* I h</<|g| 1) //\gm— I ()| dyh()da
- / W) / 9z — y)|h(z)dedy < / F@) gl * 1dy = £ 19l
]

10
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§3 September 3rd, 2020

§3.1 Convolution and Continuity

Recall convolution:
Fro@) = [ fa = o). 1 <o / f(z = y)du(y),

where f is continuous, bounded, u is a complex Radon measure(|u| is finite)

L) \
Proposition 3.1

Let T : C’8 — C’l? . Suppose T is translation invariant: T'o 7, = 7, o T for all y € R,
[There exists A < oo : [|[T'fllc, < Allfllc, for all f. Recall ||f||c, = sup, |f(z)],
and 08 , C’g are Banach spaces.] There exists a complex radon measure p such that

Tf = fx*ufor all f.
-

J

Proof. Given T : C§ — C}, consider the map ¢ : C) — C given by f — (T'f)(0). It is
clear that £ is linear. Furthermore, £ is bounded, since

ITHON < ITflles < Allflley,

so £ € (C§)*. Recall the Riesz Representation Theorem, there exists v, a complex Radon
measure, such that for all f € CJ
= / fdv.

Let y € R We have

Tf(~y) = THO - 1) = (IO =IO = [ 7t @dvie) = [ £ - o)
Similarly, for all z, (T'f = [ f(y — x)dv(y). [See lecture notes for correct algebra,
sad]. O

§3.2 Convolution and Differentiation

Informally,

4 . N
Proposition 3.2

Assume f € C'(R%),g € L' and f, Vf is bounded. Then

1 0 of
f*gGC,aij(f*g) (ax) g.

- J

Proof. We assume d = 1 for clarity.

(f*xg)(x+1t) - f$+t— — flz —y)
|

11
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Let t — 0. Use DCT, with dominator

St 6) = f)]

9(y)] - sup
tu t]
The supremum is finite by the mean value theorem. O

Example 3.3
Take g € L™, f € (', and there exists a < oo such that for all x,

[f (@) + [V f(2)] < A(z)77.

Hence, f,Vf € L'. Then fxgec CL,V(f*g) = (Vf)*g.

We can iterate this: Under appropriate conditions

0*(f*g) _0°f

gz oze
i g) 07 9
Oxas oz 9xB’

Proposition 3.4
If felLl andgELoo,thenf*gECg.

Proof. Recall: If f € L'(R%), then y 7,f € L' is continuous: As y — 0,

Iy f = flln — 0.

Then,

(fxg)(x)—(f*g)(z') = /(f(w—y)—f(w’—y))g(y)dy = /[f(ﬂ:—y)—(Tuf)(fv—y)]g(y)dy,

where u =2' —x. Asu — 0, ||f — 7uf]]1 — 0, and g € L°°, so the integral approaches 0,
as desired. ]

§3.3 Approximation

Definition 3.5 (Approximate Identity Sequence). An approximate identity sequence
for R% is (¢n)nen, ¢n € L' (R?) with the following conditions:

° fRd on = 1.

e For all 6 > 0, f|a:\>6 |on|dz — 0 as n — .

12
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\
Theorem 4

Let (¢,) be an approximate identity sequence in R
1. Let f € C’g be uniformly continuous. Then f * ¢, — f uniformly.
2. Let f e Cg . Then f ¢, — f uniformly on every compact set.

3. If 1 <p < oo, then for all f e LP, || f* ¢, — flp = 0.

[All the above limits are taken for n — co.]
\- J

Proof.
[ 5 onla) — () = / f(& — y)eny)dy — f(z)
- / (F(& — ) — F(2))en(y)dy

Then,
1 * () - f(2)] < / P& — ) — F@)lenl)ldy.
Let § > 0. Then,

/ |F (=)~ £ (@) llgn(y)ldy = /

ly<éo

)T @lentw)ldyt / F@—y)~ (@) lon()ldy.

ly>4]

/| s [f(z —y) = f(@)|len)|dy < [lonllr - sup [f(z —y) — f()]
y<

< x,|y| <o
— llgull - ws ()
< A-wi(9).
Then
/ @ —y) — F@)|lpn)ldy < / 20 flleo - [on(y)ldy
ly>4| ly|>6
<2 fllco / onldy.
ly|>6
Hence

52000 = S < Ay(0) 420 o | ol
yI>
Taking the lim sup, the second term goes to 0, so for all 6 > 0,
lim sup | * gn — fllco < Aws(6).
n—roo

Since f is uniformly continuous, lims_,ows(d) = 0, which proves the claim. O

13
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Corollary 3.6
C> N LP is dense in LP for all 1 < p < oo.

Proof. We want to construct (¢,) with ¢, € C3°.

We claim there exists a function ¢ € C§°(R?) with Je=1and p >0. Ind=1, take

h(x) = 1z > 0e~I#l. Then, define ¢(z) = h(z)h(1 — 2) € C§°. Then, we normalize ¢.
Now, take ¢, (z) = np(nz).

O

Example 3.7
Let ¢ >0, [ = 1. Define ¢,(z) = n%(nz). Then [ ¢, = 1.
Furthermore,
/ no(nz)de = / o(y)dy — 0.
|6 ly|>nd
Example 3.8

Let o(z) = (2m)"%2e~17°1/2 1 € RY. Let ¢t > 0 and ¢;(z) = (2m) =2t~/ 2¢~|=1?/(21),
Now ¢t — 01 and
/ oi(z)dz — 0.
|z[>8

This is an approximate identity family.

Example 3.9 (Interpretation of f x g)

frg= /Tyf(fﬂ) - g9(y)dy.

If g >0 and [ g =1, then we have an average of translates of f.
As n — 00, g = ¢, so the weight concentrates asymptotically at the origin.

14
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§4 September 8th, 2020

84.1 Fourier Transform ldentities

We have many functorial identities.

1. For f € L', o
(ry )N(E) = e F(E)
2. For f,g € LY(R), R
(f+9)" =713

3. For f € L,

~

(€™ F)N(€) = (&~ ).

4. We use the notation J

e =11¢"

j=1

For f € 00, Clel CY, ~
(0 F)NE) = (i) f (&)

This comes from the fact that

9 —ix-
/]Rd (axkf(x)) ey,

so we integrate by parts, use Fubini in R? and induct on |a/.

5. For f € Cg°, R
(XPf(2))(€) = (i0¢)° F(£),
where 4
28 = foj’ (i(?g)ﬁ _ 1818,
j=1
6. For f € C§°,

(951" (€) = (i©)°T(©).
7. If L € GL(d), L : R? — R%, linear invertible, then for all f € L61,
(f o L)"(€) = |det(L)| ™ f o (L") 7)(€).

The proof follows from the substitution 2 = L~!(y) and (L~1)* = (L*)~!

Corollary 4.1

V={fe @' nI*)RY):34= A <o0,|f(6) < 41()™%)

is dense in L2(RY).

15
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Proof. We showed last time that C§° is dense in L2(R?). We need to show that f € C§°
implies that f(&) = O((¢)™) for all N < oo.
WLOG, assume £ # 0, &g # 0, |£4] > %. Then,

, o .
[ H@eidn = (ig) ! [ fa) (e
8xd
of .
— (e N1 ~J —ix-£ <
(—i&q) /Rd B, (z)e dzx < oc.
We can pick up as many factors of &; as we’d like to get arbitrary bounds. O

84.2 The Gaussian
Fact 4.2. (d > 1) Take e~#**/2 = f(z) = f.(x). Assume Re(z) >0 — f, € L.
(e 2P /2N g) = (2m) /2= d/2e 161/ (22),
We consider =92 in the principal branch. When z = 1, (e_|x|2/2)/\(£) = (27r)d/ze_‘§|2/2.
Note the fact

I = / e 2y = V2.

/ €_x2/2€_ix£dl‘,
R

2% )2 +izé = %(xQ + 2ix€) = 1/2(x + i€)* 4 £2/2,

In order to calculate

we have

SO

o—E2/2 / o (@Hi©)2/2 _ €22, fo
R

If F(x) = [1%, f;(z;), then F(€) = [T, f;(&)).

For z € RT, e~#1f*/2 = o~ IL@)I*/2 where
L(z) = 2%z

Then, we use (f o L)(€) = |det(L)|~ f((L*)~1(€)). For Re(z) > 0,

/f(a:)eix'édx—/elezﬂe”'édx.

We claim that this is a homomorphic function of z in Re(z) > 0.

Fact 4.3. If f € L'(R%) and f € L', then

-~

f = @0 Y. o) = / g(€)e e,

Corollary 4.4
If felL', f: 0, then f = 0 almost everywhere.

16
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Proof. Given f,f € L'. Let ¢ € Cg° with [¢ = 1. Let p,(x) = nlp(nz). Define
fn = f *n. We know that f, — fin L' as n — oo.
Moreover, f,, € L?, since f, € L' x L?. For each n, we have

(2m) /|€ O = @iz 0

as R — oo.
Note that

nl®) = F©Pn(6) = [©B(™"0).
As n — 00, p(n71E) = @(0) = [ = 1. Hence,

Fal€) = f(6).

/ F(©)emde — / Fa(©)e e,
|€]<R R4

since ﬁ € L' as R — .
Hence, we have that

Furthermore

r)~ | FOpmIOe e = fulw)
in the L? norm. Now, letting n — 0o, f, = f * ¢, — f in the L' norm.

[ F@pmoesic— [ Foeis = (7)),
by the dominated convergence theorem. Thus,

fla) = @2m) ()Y ().

But we actually proved a stronger result: g € L' = §eC’ soifg= ]? (f)V e Oif

o~

feL' soif f,farein L', then f agrees almost everywhere with (2m)~4(f)V e C O

Example 4.5
Take f(z) = 1io,1) (z). Hence ]/“\ ¢ L'. Essentially, we have that |f(§)\ ~ % as

84.3 Schwartz Spaces
Definition 4.6 (Schwartz Space).

8&
S =S RY)={f:RI=C,f e C®VN, a,z— <m)Na—‘£ is bounded.}.
x
It is clear that . is a vector space over C. Furthermore, .¥ is a topological vector
space.
The topology on .# is defined by a countable family of seminorms.

1£llar = sup (@) -

o8 f
Ger ).
r€RT o<lgl<m

17
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We have that f € . if and only if f € C* and for all M, N € N, || f|ls,n < 00.
A neighborhood base for the topology at g would be

V(g M,N,€e) ={f € 7 :||f — gllmun <e}.

Note that if p, is a metric,

= -n Pn
ZQ <1+Pn>

n=1
is also a metric, but it wouldn’t preserve the vector space condition. Next time, we will
prove the following theorem:

Theorem 5

A — F is a linear, bijective homeomorphism.

18
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§5 September 10th, 2020

§5.1 Schwartz Space, continued
Last time, we introduced the Schwartz space,
S =S RY ={f € C® :YM,N| fllmun < oo},

N

[fllaen = Slip{@)M >

=0

o f

(o7

.

An equivalent formulation is %0 f is bounded for all «, 3.

Theorem 6

The fourier transform, A : . — % is a linear, bijective homeomorphism.

Proof. Note that if f € ., then J?e C*°. This is clear since
8?/f(a:)eix'£dx = /f(m)({)?i(emg)daz.

Hence f - (x)" is in L' for all N.
Note the following identities:

(D2 )" = (1) F(€), (2P )" = (i8:1)° F (€),

which can be verified from repeated integration by parts.
We claim that ¢8 6? f is bounded for all «, 8. Moreover, there exists M, N such that

sup 70879 < Cagll fl s
Note that R
€P9gT ) = (82 )" (€)1,
SO

sup €795 @] < (022 £) (€)1 < Casup |[(2)H102 (2 f).

By the Leibniz rule, we can commute 85 , which gives the result.

Hence, we have proved that % C ./, and A : ¥ — . is continuous. and the same
holds for f — f,so f €. = f € L' and fe L' so Ais 1-1 on § and V is onto, so we
get that A is onto. O

§5.2 Tempered Distributions
We will consider the dual of the Schwartz space,
S ={¢:% — C, linear and continuous}.

Recall, continuity by definition is given by the existence of M, N, C < oo so that for all
feZ eN<Cllfllmn.

19



Vishal Raman (October 13, 2020) Math 258

Example 5.1 (Dirac Mass)
We can take ¢(f) = f(0), the dirac mass. We can also take ¢(f) = 9% f(vo).

Let 4 be a complex Radon measure, h € L], f|x\<R |h|dz < Ch(R)A". We can
define -

o(f) = /aaf(@ h(x)du(z) € C.

Theorem 7

Every ¢ € .’ is a finite linear combination of f — [0%*f - hdy, with h,p, o as
before.

The proof is left as an exercise. The key ingredient is the Riesz Representation theorem
and the Hahn-Banach theorem.

" is given a weak topology: a neighborhood hood base of ¢ € .#’ is given by choosing
J, a finite index set, € > 0 and f; € #(j € J). Then

V={ve s [p(f;) —e(fj)l <eVjeJ}

~

Definition 5.2. For p € ./, pisamap f € ¥ — ¢(f). Then p : .¥ — C is linear.
Similarly, we can define ¢ : . — C, linear.

We can verify that @ € .. Note that

~

BN = le(F)] < Coll Fllary < ClL L.

Theorem 8

A: S — s a bijective homeomorphism.

Proof. We first show that ¢ — @ is continuous at 1. Given V', a neighborhood of v¢: J
finite, € > 0, f; : j € J , we need to control |p(f;) — J(f])\ < e for every j € J. The
neighborhood W = {¢ : |<p(]?]) - zp(f;)| < e¥j € J} gives the desired bound.

Now we claim for all p € .77, (§) = (27)%p. This comes from

(@)"(f) =) = 2((H) = (2m)f).
Hence A is 1-1 and onto, so we conclude that it is a bijective homeomorphism. ]

We can define a partial derivative of a distribution, 9%y, with 9% : %/ — .’ continuous,
linear. This is a bit shocking: Take ¢ = h € L with f|x|<R |h|dz < Cp RA*. This defines
a distribution f — [ fh = ¢(f). That means, we have a way of essentially differentiating
anything.

Note that we have a natural map i : ¥ — .’ injective, where i(g)(f) = fRd fg. Then,
we take g — i(g). Note that i is a continuous map.

Given some linear operator T : . — ., we want to associate an extension 7T :
T(i(g)) = i(T(g)) for all g € .7.

Define T : .7 — ', where T'(p)(f) = @(T(f)). It’s easy to check that 77 € End("),
but there are some bad examples.

20
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Example 5.3
IfwetakeT(f):%,ff-g’:—ff’-g,then

Suppose we have some T' € End(.¥’) and a transpose A € End(.#’) in the sense that
[1the= [ raisge 7.

For example, T = 4 A = —%. With T, A € End(.#), we can define T(p)(f) =
©(A'(f)), which defines our extension.

Proposition 5.4
i(.) is dense in ..

Definition 5.5 (Convolution for Distributions). If f € . and ¢ € ./, then

e f(@) = ¢(f2), fo(y) = f(z —y).
One can show that o x f € C* if f € ..

Proposition 5.6
Let (pn) € . If v, — @ in ', then ¢, f — p(f)Vf € S.

4 . N\
Proposition 5.7

Let (ppn) € . If ¢, — 0 in .. Then there exists M, N < oo such that for all n
and for all f € .,

on ()] < CullfllnN,

and C,, — 0 as n — oo.
g J

The proof uses the Baire Category Theorem. Recall .¥ is a complete metrizable space,
where we define a norm from

Z 9—M-N HfHM,N

b L+ [ flla,w

For d > 1, define g(x) = e~M2l?/2 \ € R. Note that geL> |g|=1.
We define §(&) = (2m)2(iN) %2~/ 2N for X £ 0. If we take g — i(g) € .7, note
that (i(g))" = i, so we are in fact doing a normal fourier transform.
Define g,(z) = e=*e*/2 for z € C, Re(z) > 0. We claim that as z — i), g, — ¢ in
the topology of .. Furthermore,
[ to: [ 19

for all f € . by the dominated convergence theorem, with dominator |f|, since |g,| < 1,
lg| = 1.
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We know that g, — g in .¥’ as z — i\. Note that
G.(6) = (2m) 2= /2~1E17/(22)

If Re(z) > 0, then g, € ..
Then as z — i\,

(2m) Y2~ /2e= 8/ (22) _y (270)8/2 (3 1)~ 4/2~ €17/ (2i0)

So g, — g in ./, so we have the result.

22
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§6 September 15th, 2020

§6.1 Poisson Summation Formula

Define Z(f)(&) = [ga f(x)e 2™ ¢dx. We have that [|Z(f)|l2 = | f|lp2 for all f €
L*nL.

N
Theorem 9

For all f € .7,

Y F(Nw) =) f(k)

nezd kezd

This has a nice interpretation: suppose we define d,(g) = g(n). We have §,, € ./,
and

F| D | = 6

nczd kezd
(G 4

Proof. Given f € .7, set g : RY/Z% — C, defined by g(z) = Y, cz4 f(z + n). Note that
g is periodic: g(xz +e;) = g(x) for all 1 < j <d.

gl@) = </9(y)6_2’”’f'@/dy> ke

kezd

Note that

> ) = 9(0) = Y [ ply -+ mydy
n k n
_ 6—27rik-(y+n) n) — w)e2miku g, Y k).

Because f is a Schwartz function, all these series converge and we can easily swap sums
and integrals. O

Example 6.1
There are lots of functions that are their own Fourier transforms. Take z"e %"/ 2 for
n € Z>o. Apply Gram-Schmidt in the order of Z>y. We get an orthonormal basis
P,(z)e~*"/2 where P, = cpaz™ + O(|z|"2).
If n=0 (mod 4),
(Pae™® /)N = (2m) /2P, eo /2,

§6.2 Size of Fourier Coefficients

Remark: If f € C¥(R?) or C*(T¢), then

This comes from (887];) §= ij]?(ﬁ)-
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We can have a stronger bound,
©Ffer? e

The proof is the same since £*f € L2/¢2 whenever 0 < |a| < k.
Recall the class

Lip = f:Rd—HC:supM<oo .
TH#Y \x—y\

4 . ™\
Proposition 6.2

Assume f € Lip and has compact support. Then,
F&)=o0(&™,

©fel
\ J

Proof. We have f € CJ(R?) N Lip. Assuming ¢ # 0,

~ [ f@e o =5 [t + 5 [ fla+ P

Since e “m/9¢ = —1, we have
1 —4T-
5 [ @) = s+ /e,
Because f is Lipschitz, f(x) — f(x + 7/€) € O(|€]71), so it’s clear the whole integral is

bounded.

Definition 6.3 (Holder Class). Define Ao(0 < o < 1), as f : sup,, Vﬁ?iy‘((!)\ < 0.
Note that o > 8 = A, C Ag. Furthermore Lip C A,.

We can state a similar proposition as above for Holder classes.

Example 6.4
Let 0 < a < 1,
00 .
f(.%‘) _ Z2fna612 T
n=0

The function f € A4, but not Ag for any 3 > a, since f(Q") = (2"«

Let f € Lipn CY. Claim f’ € L™ in the %/ sense. In other words, there exists g € L™
such that [ f¢' = — [ gy for all p € .7.

The claim immediately implies that £f(¢) € L?, since g € L? = i€ f and has compact
support.

lim/f $+t x—hm/f x_t)gp(a;)d:c

t—0 t—0
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Let f; = fracf(z) — f(z — t)t. Note that f; € L>°(R) and L™ = (L')*, so by Alouglu’s
theorem, there exists a sequence t, — 0 and g € (L')® with f; — —¢ in the weak star
topology.

Therefore, [ fi, o — — [ gp as v — oo. Thus, [ f¢' = — [ ge. O

Example 6.5
Take

o
f(l') — Z 2—naei2"az
n=0
with « = 1. f is not Lipschitz, since

ST IENFE©) =Y 1= c0.

=

Remark: For oo < 1, f is nowhere differentiable.

Example 6.6
Take f € BV(R!) with compact support, the class with bounded variation. Then

~

|FEI < V(eI

Lemma 6.7 (Riemann-Lebesgue Lemma) b
If f € L(RY) or (T%)(then f € C° bounded), then |f(£)| — 0 as |¢| — oo.
~ J
Proof. Note that
£ — 1 _ L‘g —ix-€
fl€) = 2/Rd(f(ﬂv) flz+ ‘5’2))6 dz
Then . c
T = 15w = fw+ 75l =0
O

How fast do they go to zero? Is there a quantitative bound? (Nope) How do we
characterize L1? Is C%, = (L')"? (Nope).

Proposition 6.8
The map A : L'(RY) — €% (R?) is not onto. Equivalently, Vv : C%,(R%) 4 Li.

Proof. A : L' — C’io is linear, bounded, and an injective mapping between Banach
spaces. We can apply the Open Mapping Theorem: if the map was onto, there would
exist A < oo such that ||f||,1 < Al fllco-
We claim that H;HC(; can be arbitrarily small. Define fi(x) = e~ (+itl2l?/2 for ¢ € R
L
going to oo.
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We know that
F1(&) = (2m)Y2(1 4 it) =2~ (1= 20+2))
Hence,
1] = (2m)Y2(1 + £2) W4 1P/ QAT < (27)4/2(1 4 2)(—d/4) — 0.

On the other hand || f¢||;1 is independent of ¢. O

Theorem 10
Let w: R? — (0,00) and w(€) — 0 as |¢| — co. There exists f € L' with

~

| (€] = w(§)VE.

Proof. We have a key lemma: Let w : R — (0, 00) continuous, even, piecewise, C%(R \
{0}), convex on (0,00) with compact support. Then, @ € L' and @ > 0, hence,
@2 = [ @ = (2m)%w(0). O
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§7 September 17th, 2020

§7.1 Size of Fourier Coefficients, continued

Theorem 11
Let w: RY — (0,00) and w(¢) — 0 as |€| — oo. There exists f € L! with

17(6)] > w(€)Ve.

Proof. We have a key lemma:

N
Lemma 7.1
Let w : R — (0, 00) continuous, even, piecewise C*(R \ {0}), convex on (0, c0) with
compact support and nondecreasing. Then, @ € L' and @ > 0, hence,
@l = [ @ = @n)hu().
. J

Proof. Note that

w(§) :/Rw(:v)e_mfdx:/ﬂgw(x) cos(z)dx

Furthermore, note that |z| - |w’(z)| is a bounded function(as x — 0). It follows from
Jensen’s inequality.

MO—?/mw@M%@O
=2¢" / )(1 — cos(x&))dxz > 0.

It suffices to show the equality [;°w(x)cos(x€) 2 [ w (@)1 — cos(xf)). We
integrate by parts twice:

oo
@(6) =2 [ w'(@) sin(ae)do
OOO
= 2/ w” (2)€2(1 — cos(x€))dx
0
We might have issues at 0, but we can take a limit for integrating from e to oo with

boundary terms w”(€)(1 — cos(e€)) € O(e?). Hence, @ > 0.
Note that @ € L! and for |¢] > 1,

m@ﬂgzg{A ()| dx - 2

. Assume |w'(0)| < oo, where the derivative is the right-hand derivative at 0.
Then
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so it follows that w € L1.
Finally,

w(0) = (2m) = (@)"(0) = (2W)1/@(£)d£: @2m) M@ 1,
which gives the desired bound. O

Let g : R — [0, 00] continuous, with g(§) — 0 as & — oo.

Lemma 7.2

There exists w : R — (0, 00) so that w > g and w is even, convex on (0,00), w(§) — 0
as |¢| — oo, and w is piecewise C2, where we may have infinity many breaks.

To prove the theorem, it suffices to find a function f € L' such that f(ﬁ) > w(§) for all &.
WLOG, g is even(replace g(£)+g(—&)), nonincreasing(we can replace g(x) = sup, >, 9(y)
for z > 0). Note that w(§) = w(—£) so define f = w. f= (2m)w > 2mg.
To treat w, we approximate it with functions of compact support. Let ¢ > 0 and define
w; = max(w — t,0). We conclude that w; € L' and ||@y]|;1 = (27)w(0). As t — 0%,
wy — w in %' so w; — w in .¥’. We have that @ is a complex radon measure.

Fact 7.3. If pu is a complex Radon measure and if u|g\( is absolutely continuous, then
p=cdy+hfor h € L.

We know that w(¢) — 0 as |¢] — oo and [i(€) = ¢+ h(€) so ¢ = 0 and @ € L' as
desired. ]

§7.2 Comparing Size of Functions to Size of Fourier Coefficients

We have that || f]|2 = (27)~%2|| |12 and || f]lco < || f]l-

4 )
Theorem 12 (Hausdorff-Young)
Let p € [1,2]. The n f € L¥(R?) implies that feLlforg=p = %, and
1fllq < Clp, d)||f |-
For T, R
1Flles < CEY £l ey,
. J

Note that for R%, A : LP — L" is bounded.
Proof. We must have that » = p’. Fix a function 0 # f € .. Define f;(z) = f(tx) for
teRT.
fo©) =t (7).
Note that
Il = [ Ifapds =t [1s@Pay =i

Then | fill, = =44/ f]|,, so ~ ~
1ill: _ py IF
1fells " 1 £1ls
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where v = —d + d/r + d/p. We must have that v = 0 for the ratio to be bounded, which
. _ 1,1
gives 1 = " +

For T¢, we can only take t — +00 so v < 0, and we can only conclude that r > p'.

But > p/ implies that /' C €7, so A : LP — 7 C (", O]

4 )
Theorem 13 (Riesz-Thoren)

Let (X, ), (Y, v) be o-finite measure spaces. Suppose we have exponents po, p1, go, g1 €
[1,00]. Let S(X) be the set of simple functions from X — C. Assume T : S(X) —
(L' + L>°)(Y) is linear and there exists Ag, A1 < oo so that for all f € S(X),

1T Fges < Azl Flle-
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§8 September 22nd, 2020

§8.1 Comparing Size of Functions to Size of Fourier Coefficients, continued

Recall

4 )
Theorem 14 (Riesz-Thoren)

Let (X, ), (Y, v) be o-finite measure spaces. Suppose we have exponents po, p1, go, g1 €
[1,00]. Let S(X) be the set of simple functions from X — C. Assume T : S(X) —
(L' + L>)(Y) is linear and there exists Ag, A1 < oo so that for all f € S(X),

1T Fpes < Azl Fllee-
. J

We will prove this later, with an elegant application of complex analysis.
Remark: (R?) Is it true that L? C L7 (2 < p,q = p’)? No. We sketch the proof.
Suppose it was true. For f € L? with || f||, < 1, define ¢/ € (L4)* by

ls(g) = /gf-

This defines a bounded linear functional as desired. We claim that {¢} is pointwise
bounded. Then, by the Uniform Boundedness Principle, it follows that ¢; are uniformly
bounded. We know that

el Loy = NF gy = I1F NIz
by the Reverse Holder’s Inequality. This would give the desired inequality.

Finally,
ly(g) =/9f=/§f,

05(9)] = |/§f| < llgllll fllp < lIglza-

and g € L9. Then

§8.2 Rademacher Functions

Theorem 15 (Kahane)
If a € (2, there exists f € L* such that for all n, |f(n)| > |ay|.

We prove a weaker result.

Theorem 16
For T¢, d > 1. For any a € ¢?, there exists f € Np<ooL? such that for all n € N,

~

[f ()] = lan]

We will use Rademacher Functions: r, : [0,1] — {—1,1}, with n > 0. We let
ro(z) = 1, for ry,, we split [0, 1] into 2™ intervals and alternate between 1 and —1.Note
that HrnHLQ([O,l]) = 1. If n > m, then

/rnrmdac =0.
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~
Lemma 8.1
For a; € {1,2,3,...},
1 N
/ H T,%g dx =0,
0 Gy
unless every a; is even.
- J

We can now form a Rademacher Series:
f(z) = Z nn ().
n=0

If c € ¢% then f € L? and ||c||;2 = || fl|12-

Theorem 17 (Khinchine's Inequality)

If ¢ € ¢2 then f € (Np<oo LP- For all p,q € (0, 00), there exists 4,4 < co such that
for all ¢, || fllza < A|lf|lLe-

Proof. WLOG, p = 2q.
B q q
JUGEY RN DS | CED O | G
ny,...,ng j=1 mi,...,Mgqg 1=1

which is
1 49 q
S% [ AT rmas
Jj=1 i=1

If the n’s and m’s are pairwise distinct, we bounded it above by q!||c|\?§ < quq||c||?2q
in general. O

8§89 September 24th, 2020

§9.1 Rademacher Functions, continued

We consider 2 = [0,1] with Lebesgue measure, a probability space. Then {r,} are
independent random variables: for N,a; = +1. Consider B = {x € [0,1] : 7j(z) = a;,j €
[1, NJNZ,rny1(x) = 1}. Then,

u(B) 1

p{z rj(z) =aj}) 2

We were proving the following theorem:

Theorem 18
For T, d > 1. For any a € {2, there exists f € ﬂp<oo LP such that for all n € N,

~

[f(n)] = lan]-
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Proof. We have Khinchine’s Inequality: For all p < oo, there exists C}, < oo such that

0
§ CnTn
n=1

< Gpllelee-
P

We are given a € ¢? and we want f € LP(T?) : |f(n)| = |ay| for all n.
Define

fulr) = Z T (W)ane™®, w € [0,1] = Q.

neza

We know that f,, € L2(T¢). Consider

Tull? ) maydw :/ / ro(W)ane™?®
L1 = [ P

< / C2llalf,dx
Td

= (2m)*CBall 2.

p
dwdz

Hence, the average [, || fu|l},dw < oo, so for almost every w € Q, f,, € LP.
Hence, for any p,

[fu(n)] = [rn(w)an| = |an|.
Finally, we can take p = 2,4,6,..., so that the set of all bad w is a countable union of
Lebesgue null sets. R
For almost every w, fi, € (<o LF and [fi(n)| = [an| for all n. O

§9.2 Convergence of Fourier Series for 1-dimensional Tori

Recall _
fn) = (2m)! / f(@)e ™ dz,

where we identify 7! = [, pi].
The partial sums

N
Sxf@) = Y Fme™ =1 Dofa) = 2n) ! [ o~ ) Duw)dy,
n=—N
and recall that

N .
Dy(x) =) ™ = n<<JIVl (1/12/)@@

—N

if x # 0, or 2N + 1 if z = 0. Note that Dy(xz) € C*, so there are no issues with
singularities at 0.
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1" 1Y
_ nx _
%/_WDN(QT)dl‘—Qﬂ_/_W Z e"dr = 1.
n=—N
However, ||[Dy||r1 = Q(log(N)), so we don’t have an approximate identity sequence.
Proof. Let M = N + %

o(k+1)2m /M o(k+1)2m/M

/ |sin(Mz)|d$ >/ 2|sin(M:B)|dx
ok2m /M |sin(xz/2)] = Joken/m ||
o(k+1)2m /M
> 2_’“% |sin(Mz)|dz
2
™ Jok2m/M
1 o(k+1)2m
—2t [ sy
= C'()27]€2]c = (.
So || Dyl = Q(log N). O

Theorem 19

There exists a function f € C°(IT') such that Syf(0) 4 f(0) (and {Syf(0)}
unbounded).

Proof. Suppose for all f € C% {Sxf(0)} is bounded.
1 K
n(9) = Sw9(0) = 5 [ (=) Dxtw)dy,
so £y € (Co(T1))*. By the Uniform Boundedness Principle, £y is uniformly bounded:

1
1enll(coy = 51D l1 < oo.
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4 N\
Theorem 20
Let f € LY(T), zo € T,a € C. If
[ 1#@) = alle = a0l < o0,
T
then Sy f(zo) — a.
4

Proof. Let g(z) = f(x — zp) and reduce to the case where xyp = 0. Similarly, g(z) =
f(z) — a reduces to the case where a = 0.
So [|f(z)||z|7! < oo, and we want Sy f(0).

TS
2 = _— N+1/2 .
wSxf(0) = [ G s (N + 1/2))d]
So we have
I= / g(z)e™Ndx — 0,
by the Riemann-Lebesgue Lemma. O
Corollary 9.1

If > 0, then Sy f(x) — f(x) for all x for all f € A,.

Theorem 21
Let a € (0,1). There exists C, < 0o so that for every f € Ay(T), and for all NV,

IS8 f = fllco < CalN"*10g(N + 2)|/f|aa

Proof. We can reduce to Sy f(0) — f(0), f(0) = 0.

| fllA, has norms:
@) -l
T#Y |z —y

sin(Mz)

m,M:N+1/2

2msnf(0) = [ 1)

Then

2
D a 7d :Ca 5(1’
|/x|§6f(a:) N (@) S/Imlsém \|f\|Aa|x| x £l
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and

/; %Md = /5 " g()eMd

1 (7 - 1 m+m /M T "
i iMx " iMz g
s [ o e
1 /7 . 1 [o+7/N ,
=3 / [9(z) — gla — 7 /M)]e™M*dx + 5 / g(z — m/M)eM*dy
1 é
1 [t/ "
:|:2/ gz —/M)e"™*
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§10 September 29th, 2020

I missed this lecture. The notes will be updated upon reviewing the lecture notes.
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§11 October 1st, 2020

§11.1 Cesaro Means and Kernels

We are discussion functions f : T — C. We defined the Cesaro Means onf =
(n+1)7t ZQ;O Sy f. We showed that on f = f*D,,(we used the Normalization: fxg(x) =
5= J f(@ = y)g(y)dy, so that fxg=f-7)

Then
1—n|/(N+1),n|<N+1

0, else

anf—f*KN,I?N(n)—{

We also have f x Vi, where Vy = Koni11 — K. Note that ||V,,|l1 < 3. Note that these
form an approximate identity sequence. This is nice because it is even stays exactly at
1from O until N 4 1 and decreases linearly to 0. Hence Viy(n) < 1 for all |n| < N + 1.
Then

— ~

f*Vn(n) = f(n),In| <N +1.
We also have Poisson Kernels, where 0 < r < 1,
1—r?
1 —2rcos(x) +r?

oo
P.(x) = Z rinlgine —

n=—oo

The denominator is 0 if only if cos(x) =1 and r = 1, but r < 1 and cos(z) < = = 0. One
can show that this is an approximate identity family.
Note that

f*/I_DIn):]?'T 0.

This is in effect like a partial sum, but instead a weighted average.
Also note the Dirichlet problem: Given |z| < 1, we would like to find u such that

Au=0,|z| <1
u(e’) = f(0), ]2 =1

Let z = re?, with the natural parameterization. Then,

u(re) = i f(n)r'”lemg.

n=—oo

Note that rl?lei? = ;7 if 5 > 0 and rI™le™ = 277 if n < 0. We can verify that Au =0
for 7 < 1. On the boundary, we have exactly u(e??) = f(6).
As a final remark, note that for f € L?, fx Ky — fin L?. But fxKy = Z|u|<N+1(1—

n‘%rll) f(n)e™™® which is a finite linear combination of the characters. Hence, we have a

corollary:

Corollary 11.1
span{e™® : n € Z} is dense in L*(T).
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§11.2 Proof of Kolmogorov’s Theorem

Theorem 22 (Kolmogorov)
There exists f € L*(T) so that (S, f(x) : N € N) diverges for almost every = € T.

Proof. We show that there exists f € L! so that limsupy_, |Snf(z)] = oo almost
everywhere. If we took f * D,, we can make the convolution large at a point, but it’s
difficult to make the sup large over many .

We wish to find g; so that ||gj|1 = 1 and supy |Sng;| is large for many z. We then

form
oo
> 27,
j=1

which will converge in L', but the partial sums will get large.

Lemma 11.2

For any A < oo, there exists a Borel probability measure p on T so that for almost
every z € T, supy |Sn(p)(z)| > A.

Proof. Note that Sn(p)(@) = >, 1<n 7i(n)e™® where fi(n) = 5= [ e~ "du(z).
Let M < oco. Take [—m, 7| and place M almost equally space points y;, so that

ly; — 2y 71| < 2% and {y;} U {1} are linearly independent over Q. We choose p =
-1
M Zj:l Y

Then

27TSN( 1ZDN «T—yj

sin((N + 1/2)(z — 3,))
=M IZ sin(1/2(z —y;))

Suppose {y; : 1 < j <m}U{1} U{z} is linearly independent over Q. For each such z,
we claim there exists NV so that [Sn(u)(z)| < colog(M).

Choose N such that for every j, the sign of the numerator is the sign of the denominator,
and the magnitude of the numerator is at least 1/2 for all j. We want that W —
(—ﬁ(m — y;)) is approximately some prescribed value modulo Z. Hence, we would like

5201 < j < M}U({1} to be linearly independent on Q.

Then recall Kroneker: if {t; : 1 < j < M} U {1} are independent over Q, then for
any s; € R, € > 0, there exists n € Z so that ||nt; — 5[ (mod z) < €, where (mod Z) is
distance to the nearest integer.

Then,
1 ] M/2
(2”)5N<M>(x)ZTZW>CM 1Z|~T yil~ t<oMT 12 (J/M)~" = log(M).
i 2 J 3=1 J=1

O]
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Lemma 11.3

For every A < oo, € > 0, there exists K < oo and p, a probability measure, then
supy<g |Sn(p)(z )\ >Aforallz €T\ E for |E| <e.

Lemma 11.4

For all A < oo, € > 0, there exists K and a trignometric polynomial so that [|g|[; <1
and supy<x [Sn(g9)(z)] > Afor all z € T\ E for |E| < e.

Proof. Let pu be a above, g = px V. Then g(n) = fi(n) for |n| < K. Hence, Sy(g) =
Sn(p) whenever N < K.

Then
gl =l Vil < Vil < 3.
[We replace g with g/3 to finish the proof.] O
Lemma 11.5
Define Sy f(z) = Zg:_oo f(n) iz For all A < co,e > 0, there exists K < oo so

that there exists a polynomial g with [[g|| <1 and supy<x |Sn(g)(z)] > A for all
x & E, for |E| <e.

Lemma 11.6

In Lemma 11.5, we can achieve g(n) = 0 for all n < 0.

Finally, we prove Kolmogorov’s Theorem. We have a family of g, from Lemma 11.6 .

Set
22 jga zTa:

We choose a;, T recursively. Note that ||f||1 < oo. Choose T} greater than the
largest n € N so that there exists £ < j with (ga,e'7*®)"(n) # 0. The support of the
Fourier transform of ga,e e1i® lies to the right of the support of the fourier transform of

ZZ<] 92— ga zTgx
Then, we choose o so that for all # € E; where |E;| < 277, there exists N so that

|58 Ga; (@)] = 2%+ 27|90, llocs
£<j

and S’N(gw)(ac) = ga,(z) for £ < j.

Then
= 27 g0, ()€ + 8N (27 g, ()€ T7) + Y Sy (27 o, €T (),
0<j £>j
but the last term vanishes and the second term dominates the first. O
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§12 October 6th, 2020

§12.1 Lucunary Series

We define the series A C Z where f(z) =) 2 f(n)e™*. Rademacher series tend to be
useful when considering these types of series.

4 N
Theorem 23
(T =T') Let 6§ > 0 and A = (ng) (1 + d)-lacunary. For all p < oo, there exists
C = C(p,6) < oo so that for all a € £2,
13 ake™ | ocr) < Cllale
k
. J

Proof. We show

[1X aemepan < e
k

If suffices to prove this for p = 2¢, ¢ € N. Then,

™

q q
> S Il [ [ et aian

ki,.okg l1,0gj=1  m=1 -

where the integral is 0 unless the exponent of e is 0.
Without loss of generality, 1 4 ¢ is large relative to q. Choose large N and k = r
(mod N). Then,

Ny
A=JA.
n=0

It suffices to prove that || ", cp are™™ || 120 < Cllal|p.
We have ng, + -+ +ng, = ng + -+ +ng,. Wlog, kg < kg1 < -+ < ky. Then ng, is
the largest, so if ¢1,...,44 < k1, then RHS < ny,. O

Theorem 24
Let 6, A be as above. Let a € (2, f = ok ape™® If f € L, then a € /.
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