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1 January 19th, 2021

1.1 Review of Sobolev Spaces

Definition 1.1. Given u ∈ D′(U) for U ⊆ Rn open: that means that u : C∞
c (U) → C

and for every compact set K ⊂⊂ U , ∃C,N for all φ ∈ C∞
0 (K) such that

|u(φ)| ≤ C sup
|α|≤N

|∂αφ|.

Examples:

� Take U = (0, 1) and take u =
∑

N δ1/n, where δ1/n(φ) = φ(1/n).

� Take u ∈ L1
loc(U), where u(φ) =

∫
uφ. Differentiation is defined formally though

integration by parts as ∂αu(φ) = (−1)|α|u(∂αφ).

Definition 1.2. The Sobolev spaces W k,p(U) = {u ∈ L1
loc(U) : ∂

αu ∈ Lp(U), ∀|α| ≤ k},
for k ∈ N0, 1 ≤ p ≤ ∞. Note that differentiation is in the sense of distributions. We
write Hk(U) = W k,2(U), which are Hilbert spaces with the inner product

⟨u, v⟩ =
∑
|α|≤k

∫
U

∂αu∂αv.

Definition 1.3. W k,p
0 (U) = C∞

c (U), where the closure is with respect to the W k,p norm.

Theorem 1 (Approximation)

For U ⊂⊂ Rn,
C∞(U) ∩W k,p(U) = W k,p(U)

where the closure is with respect to the W k,p.
If ∂U ∈ C1, then we can improve up to

C∞(U) ∩W k,p(U) = W k,p(U)

Theorem 2 (Extension)

If U ⊂⊂ Rn and ∂U ∈ C1, for U ⊂⊂ V ⊂⊂ Rn, there exists E : W 1,p(U) → W 1,p(Rn)
such that Eu|U = u and the supp u ⊂⊂ V .
We can extend this to W k,p if the boundary is Ck.

Theorem 3 (Traces)

For U ⊂⊂ Rn with ∂U ∈ C1, there exists T : W 1,p(U) → Lp(∂U) which is linear and
boundary such that for u ∈ C(U) ∩W 1,p Tu = u|∂U .

Example 1.4

For U ⊂⊂ Rn, ∂U bounded,

H1
0 (U) = {u ∈ H1 : Tu = 0 ∈ L2(∂U)}.

The converse of showing Tu = 0 implies H1
0 is the more difficult one.
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1.2 Fourier Transform

We first review the Fourier Transform. We define the Schwartz space:

S = {φ ∈ C∞(Rn) : xα∂βφ ∈ L∞∀α, β ∈ Nn}.

For φ ∈ S, we define

φ̂(ξ) =

∫
φ(x)e−ix·ξ dx.

Note that F , the Fourier transform is invertible on §. The key properties of the fourier
transform are

F(1/i∂xφ) = ξFφ, F (xφ) = −1/i∂ξFφ.
We also have

F−1 =
RF
(2π)n

, Rφ(x) = φ(−x).

We define S ′ onto C so that for u ∈ S ′, there exists C,N such that

|u(φ)| ≤ C sup
|α|,|β|≤N

|xα∂βφ|.

Note that S ′ ⊂ D′.

Definition 1.5. F : S ′ → S ′ by û(φ) = u(φ̂).

Examples:

� δ̂0(φ) = δ0(φ̂) = φ̂(0) =
∫
φ = 1(φ).

� Take R2 and consider u(x) = 1
|x| . This function is in L1

loc. If we multiply by

(1 + |x|)−2u ∈ L1(Rn), it follows that u ∈ S ′, since

|u(φ)| =
∣∣∣∣∫ (1 + |x|)−2u(1 + |u|)2φ

∣∣∣∣ ≤ C sup(1 + |x|)2φ.

Now, we compute û ∈ S ′. Since F is continuous on S ′, we approximate u and hope
the result converges to the desired result. Define uϵ → u in S ′ for uϵ ∈ L1.

Try uϵ(x) =
e−ϵ|x|2/2

|x| ∈ L1 for ϵ > 0. We want to calculate ûϵ and take the limit

as ϵ → 0+. We can evaluate the integral by converting to polar coordinates and
completing the square. Unfortunately, it reduces to an integral that is too hard,
but we will learn asymptotics of the integral as ϵ→ 0. We find that û(ξ) = 2π/|ξ|.
We can approach this differently. Note that u = 1/|x| is homogeneous: u(tx) =
tau(x) for t > 0, for functions. For distributions, we have that for φ ∈ S,
u(φ(·/t)t−n) = tau(φ) for t > 0. For the Fourier Transform, if u ∈ S ′(Rn) is
homogeneous of degree a, then û is homogeneous of degree −n− a. It follows that
our Fourier transform is of degree −1.

Furthermore, note that 1/|x| is spherically symmetric, and the Fourier transform
preserves spherical symmetry(note that the Jacobian factor for rotations is 1). It
follows that the fourier transform is also spherically symmetric. It follows that

F(1/|x|) = C/|ξ|+
∑
|α≤N |

cαδ
(α)
0 ,

but delta terms have too much homogeneity.
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2 December 21st, 2021

2.1 Plancherel’s Theorem

Recall that the Fourier transform is an isomorphism on S - it is a bounded linear operator
whose inverse is also bounded.

Note that ∫
û(ξ)φ̂(ξ)dξ =

∫∫∫
u(x)φ(y)e−i(x−y)ξ dxdydξ

In the sense of distributions,
∫
e−i(x−y)ξ dξ = (2π)nδ(x− y). Hence,∫∫∫

u(x)φ(y)e−i(x−y)ξ dxdydξ = (2π)n
∫
u(x)φ(x) dx.

For u, φ ∈ S, we have the following:

⟨û, φ̂⟩ = (2π)n⟨u, φ⟩.

This implies that
∥û∥2 = (2π)n/2∥u∥2, u ∈ §.

If un → u in L2 then un → u in S ′ by the Cauchy-Schwartz inequality. It follows that
ûn → û in S ′ but our formula shows that û is in L2. Hence, F : L2 → L2 and for
u, v ∈ L2, ⟨û, v̂⟩ = (2π)n⟨u, v⟩.
Recall last time, we were finding the Fourier transform of u(x) = 1/|x| in R2. For

u ∈ S ′(Rn) homogeneous of degree a, û ∈ S ′(Rn) is homogeneous of degree −n− a. In
our example, It follows that û(ξ) is homogeneous of degree −1. We also observed that u
is invariant under rotations so it follows that û is invariant under rotations.
A function is homogeneous of degree −1 if v(kθ) = a(θ)

r
. Since our function is invariant

under rotations, û(ξ) = c
|ξ| away from zero. It follows from our previous argument that

û(ξ) = c
|ξ| since δ terms have homogeneity of at least −2.

Note that ⟨u, φ⟩ = (2π)2⟨û, φ̂⟩ and we find û by choosing an appropriate φ.

∫
R2

φ(x)

|x|
dx =

∫ 2π

0

∫ ∞

0

φ(r) drdθ

= 2π

∫ ∞

0

φ(r) dr.

Choosing φ(r) = e−r
2/2, we find that the integral is (2π)3/2.

Evaluating the other side,

φ̂(ξ) =

∫
R2

e−|x|2/2−ix·ξ dx =

∫
e−

1
2
(x+iξ)2− 1

2
|ξ|2 = 2π

∫
e−|ξ|2/2 = (2π)5/2.

It follows that c = 2π.

2.2 Fourier Characterization of Hk spaces

Theorem 4

Hk(Rn) = {u ∈ S ′(Rn) : (1 + |ξ|2)k/2û ∈ L2}.

7
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Proof. Suppose that ∂αu ∈ L2 for |α| ≤ k. We know that ∥u∥2 = (2π)−n/2∥û∥. It follows
that ∂̂αu ∈ L2. Note that ∂̂αu = i|α|

xiαû ∈ L2 for all |α| ≤ k.
Hence,

(1 + |ξ|2)k/2 ≤ Cn,k sup
|α|≤k

|ξα|.

So it follows that (1 + |ξ|2)k/2û ∈ L2.
Now, suppose (1 + |ξ|2)k/2û ∈ L2. It follows that |ξα| ≤ Ck,α(1 + |ξ|2)k/2 for |α| ≤ k.

Hence ξαû ∈ L2 so it follows that ∂αu ∈ L2 by Plancherel’s Theorem.

Remark 2.1. We use the notation ⟨ξ⟩ = (1 + |ξ|2)1/2.

Note that the definition does not require k ∈ N.

Definition 2.2. Hs(Rn) = {u ∈ S ′ : ⟨ξ⟩sû ∈ L2}, s ∈ R.

Theorem 5

Suppose u ∈ Hs(Rn) and s > 1
2
. Then v(y) = u(0, y), y ∈ Rn−1 satisfies v ∈

Hs−1/2(Rn−1).

Remark 2.3. We should define Tu(y) = u(0, y) for u ∈ S. Then T : Hs(Rn) →
Hs−1/2(Rn−1) if s > 1/2.

Proof. Take u ∈ S. We wish to show that ∥v∥Hs−1/2(Rn−1) ≤ C∥u∥Hs(Rn).
Note that

v̂(η) =

∫
Rn−1

u(0, y)e−y·η dy

and by the Fourier Inversion Formula

u(0, y) = (2π)−n
∫
Rn

û(ξ1, ξ
′)eiy·ξ

′
dξ1dξ

′,

so it follows that

v̂(η) = (2π)−n
∫
Rn−1

∫
Rn

û(ξ1, ξ
′)e−iy·(η−ξ

′) dξdy

= (2π)−n
∫
Rn

∫
Rn−1

û(ξ1, ξ
′)eiy·(ξ

′−η) dydξ

= (2π)−1

∫
Rn

û(ξ1, ξ
′)δξ′=ηdξ

= (2π)−1

∫
R
û(ξ1, η)dξ1.

Note that up to constants

∥v∥2Hs−1/2 =

∫
Rn−1

⟨η⟩2s−1|v̂(ξ)|2 dη =

∫
Rn−1

⟨η⟩2s−1

∣∣∣∣∫ û(ξ1, η) dξ1

∣∣∣∣2 dη.
8
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Then,∫
Rn−1

⟨η⟩2s−1

∣∣∣∣∫ û(ξ1, η) dξ1

∣∣∣∣2 dη
=

∫
⟨η⟩2s−1

∣∣∣∣∫ û(ξ, η)(1 + |ξ1|2 + |η|2)s/2(1 + |ξ1|2 + |η|2)−s/2dξ1
∣∣∣∣2 dη

≤
∫

⟨η⟩2s−1

∫
|û(ξ1, η)|2(1 + |ξ1|2 + |η|2)sdξ1

∫
(1 + |ξ1|2 + |η|2)−sdξ1 dη

≤
∫

⟨η⟩2s−1⟨η⟩−2s+1

∫
|û(ξ1, η)|2(1 + |ξ1|2 + |η|2)sdξ1

∫
(1 + u2)−sdudη

=

∫
|û(ξ)|2⟨ξ⟩2sdξ = ∥u∥2Hs ,

since ∫
|û(ξ1, η)|2(1 + |ξ1|2 + |η|2)sdξ1dη =

∫
|û(ξ)|2⟨ξ⟩2sdξ.

9



Vishal Raman (May 10, 2023) Math 222b

3 January 26th, 2021

3.1 Sobolev Spaces, continued

Recall, we have U ⊂ Rn open. We typically assume U is bounded and ∂U ∈ C1. For
these spaces, we define

W k,p(U) = {u ∈ D′ : ∂αu ∈ Lp(U), |α| ≤ k}.

Recall the extension property: there exists a map E : W 1,p(U) → W 1,p(Rn) such that
Eu|U = u and u = 0 for |x| > R for some R with U ⊂⊂ B(0, R).
We also consider the Hs(Rn), the fractional Sobolev spaces: {u ∈ S ′(Rn) : ⟨ξ⟩sû ∈ L2}.

This is a Hilbert space with the norm

∥u∥2Hs =

∫
⟨ξ⟩2s|û(ξ)|2 dξ.

Last time, we showed that If we have u ∈ Hs(Rn) and s > 1/2, then v(y) : u(0, y),
y ∈ Rn−1 satisfies v ∈ Hs−1/2(Rn−1). Today, we will show that Hs(Rn) ⊂ C0(Rn) if
s > n/2, where C0 denotes continuous functions vanishing at infinity. This means that
there exists T : Hs(Rn) → Hs−1/2(Rn−1) such that for u ∈ S, Tu(y) = u(0, y).

Theorem 6

Hs(Rn) ⊂ C0(Rn) if s > n/2.

Proof. We first prove that if ⟨ξ⟩sû ∈ L2, s > n/2 then û ∈ L1(Rn).∫
Rn

|û|dξ =
∫
Rn

⟨ξ⟩−s⟨ξ⟩2|û|dξ ≤ ∥⟨ξ⟩−s∥2∥u∥Hs .

The first term is finish precisely when s > n/2 [exercise: convert to polar coordinates].
This implies that u ∈ L∞(Rn), following from the Fourier Inversion formula.
We know that x 7→ û(ξ)eixξ is continuous so it follows that x 7→ u(x) is continuous

by the dominated convergence theorem. Finally u(x) → 0 as |x| → ∞ by the Riemann-
Lebesgue lemma: if û ∈ L1(Rn), then u(x) → 0 as |x| → ∞.

Proof. Recall S(Rn) ⊂ L1(Rn) is dense. Taking v ∈ L1, taking vR = v(x)1B(0,R)(x).
Then vR → v y the dominated convergence theorem. Now take φ ∈ C∞

c with φ ≥ 0,∫
φ = 1 wth φϵ(x) =

1
ϵn
φ(x/ϵ). Taking vR,ϵ = vR ∗ φϵ ∈ C∞

c (Rn) and vR ∗ φϵ → vR in L1

as ϵ→ 0.
Hence, we can take v ∈ S so that ∥v̂− û∥L1 < ϵ/2. Now, |v(x)| < ϵ/2 if |x| > R, hence

|u(x)| ≤ |u(x)− v(x)|+ |v(x)| < Cϵ+ ϵ/2

which goes to 0 as we send ϵ→ 0.

3.2 Gagliardo-Nirenberg-Sobolev(GNS) Inequalities

10
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Theorem 3.1

If 1 ≤ p < n and we define p∗ = np
n−p , then there exists C = C(p, n) so that for all

u ∈ C∞
c (Rn),

∥u∥Lp∗ ≤ C∥∇u∥p.

Remark 3.2. We can find the value of p∗ without doing the computation through
scaling.Take uλ(x) = u(λx). We have that ∥uλ∥p∗ ≤ C∥∇(uλ)∥p. Then, evaluate both
sides and compare the exponent on λ.

Note that the result is not true for p = n > 1. It is true for p = n = 1.

Theorem 3.3 (Morrey’s Inequality)

For n < p ≤ ∞, there exists C = C(p, n) such that for u ∈ C1(Rn), we have

∥u∥Cγ(Rn) ≤ C(∥u∥p + ∥∇u∥p),

where γ = 1− n
p
, where

∥u∥Cγ(Rn) = sup |u|+ sup
x ̸=y

|u(x)− u(y)|
|x− y|γ

.

Theorem 7 (General Formulation)

Take U ⊂⊂ Rn with ∂U ∈ C1. Take n ∈ W k,p(U).

� if k < n/p, then u ∈ Lq(U) where 1/q ≥ 1/p− k/n and ∥u∥Lq(U) ≤ C∥u∥Wk,p .

� k > n/p, then u ∈ Ck−[n/p]−1,γ(U) where γ = [n/p] + 1− n/p if n/p ̸∈ N and
1− δ for all δ > 0 if n/p ∈ N.

3.3 Compactness

Definition 3.4. Let B be a Banach space. A subset K ⊂ B is compact if for every
sequence {un} ⊂ K such that ∥un∥B ≤ C, there exists a convergence subsequence
unk

→ u ∈ B.

Remark 3.5. If {u : ∥u∥B ≤ 1} ⊂ B is compact, then B is finite dimensional. We can
have a space B′ ⊂ B and {u ∈ B′ : ∥u∥B′ ≤ 1} compact in B. If we have a sequence
{un} ⊂ B′ and ∥un∥B′ ≤ C then there exists nk, u ∈ B such that ∥unk

− u∥B → 0.

We will take B = Lq(U) where 1 ≤ q < p∗ and B′ = W 1,p(U).

Theorem 8 (Rellich-Kondrachov)

The unit ball in W 1,p(U) is compact in Lq(U) for bounded U .

11
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4 January 28th, 2021

Recall the GNS inequality: if 1 ≤ p < n, p∗ = np
n−p , there exists C = C(n, p) for all

u ∈ C∞
c (Rn) so that ∥u|Lp∗ ≤ C∥∇u∥Lp .

If U ⋐ Rn, ∂U ∈ C1, then there exists C = C(n, p, U) such that Lq(U) ⊃ W 1,p(U) for
1 ≤ q ≤ p∗.

4.1 Compactness

Suppose B is a Banach space and B′ ⊂ B another Banach space. We say that the
inclusion B′ ⊂ B is compact if bounded sets in B′ are precompact in B. In other words,
for a sequence {un} ⊂ B′ with ∥un∥B′ ≤M , there exists a subsequence unk

and u ∈ B
such that unk

→ u in B.

Example 4.1

Take B = C([−1, 1]), B′ = C1([−1, 1]) with the supremum norm on B and ∥u∥B′ =
sup|x|≤1(|u(x)|+ |u′(x)|).
The inclusion is compact: if we have ∥un∥B′ ≤ C, by the mean value theorem,

|un(x)| ≤ C and |un(x) − un(y)| ≤ C|x − y|. By Arzela-Ascoli, there exists a
subsequence unk

and u ∈ C so that ∥unk
− u∥C([−1,1]) → 0.

Example 4.2

In the previous example, take un(x) = |x|1|x|>1/n + (nx
2

2
+ 1

n
)1|x|≤1/n.

Then un ∈ C1[−1, 1] and ∥un∥C1[−1,1] ≤ 2. We can take a subsequence nk = k and
u(x) = |x| ∈ C[−1, 1] \ C1[−1, 1] where unk

→ u ∈ C.

Given a Banach space B, we have the dual space B∗ = {linear u : B → C|∀x ∈
B, |u(x)| ≤ C∥x∥B}. The is also a Banach space.

Theorem 9 (Banach-Alaoglu)

Suppose ∥un∥B∗ ≤M . Then, there exists a subsequence unk
and u ∈ B∗ such that

for all x ∈ B, unk
(x) → u(x).

4.2 Rellich-Kondrachov

Theorem 10 (Rellich-Kondrachov)

If U ⋐ Rn, ∂U ∈ C1, then for 1 ≤ q < p∗, Lq(U) ⊃ W 1,p(U) is a compact inclusion.

Proof. Take p = 2. Then p∗ = 2n
n−2

> 2. First, suppose U ⋐ B(0, R). We can assume
R = 1. Suppose we have a sequence ∥vn∥H1(U) ≤ 1. There exists a sequence un ∈ H1(Rn)
such that un|U = vn, ∥un∥H1(Rn) ≤ 1 and supp un ⊂ B(0, 1)(this is the extension
operator).
We have un ∈ H1(Rn), ∥un∥H1 ≤ 1, supp un ⊂ B(0, R). We want nk, u ∈ L2(Rn) such

that unk
→ u in L2. We claim that u(x) = (2π)−n

∑
m∈Zn û(m)eim·x for x ∈ B(0, 1) ⊂

[−π, π]n with convergence in D′.

12
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Alternatively, ∫
u(x)φ(x) dx = (2π)−n

∑
m∈Zn

û(m)

∫
φ(x)eim·x dx

= (2π)−n
∑
m∈Zn

û(m)φ̂(m).

For u, v ∈ L2,
∫
u(x)v(x) dx = (2π)−n

∑
m∈Zn û(m)v̂(m).

Recall the Poisson summation formula: for n = 1, a ̸= 0,∑
k∈Z

eikax =
2π

a

∑
k∈Z

δ(x− 2πk/a)

in the distributional sense.
Note that (1 − eiax)

∑
k e

ikax =
∑

k e
ikax −

∑
k e

i(k+1)ax = 0. We can rewrite this as
−2ie−iax/2 sin (ax/2)

∑
k e

ikax = 0. Let w(x) =
∑

k e
ikax, so it follows that supp w ⊂

{2π
a
k}k∈Z . It follows that w(x) is the sum of delta functions supported at 2πk/a for

k ∈ Z up to constants.
Furthermore, note that w(x + 2πa) = w(x). So it follows that the constants are

independent of the index. To find the constant, for some function, replace φ(·) with
φ(·+x). Then the right side is c

∑
k∈Z φ(2πk/a+x). Note that φ̂(·+x)(ξ) = eixξφ̂(ξ) . It

follows that the left hand side is
∑

k∈Z φ̂(ka)e
ikax. Now suppose supp φ ∈ C∞

c ((0, 2π/a)).
Integrating both sides, the left side is 2π/aφ̂(0). The right side is c

∫
φ(x) dx = c(a)φ̂(0).

Thus, c = 2π
a
.

The Poisson summation formula is more generally
∑

k∈Zk eiak·x = (2π/a)n
∑

k∈Zd δ(x−
2πa/k).
Applying this to a φ gives our desired claim from earlier. it follows that 1

(2π)n

∑
k∈Zn û(k)v̂(k) =∫

u(x)v(x) dx with u, v ∈ L2, supp u, v ∈ [−π, π]n.
Note that for u ∈ L2, we have the Plancherel formula,

∥u∥22 =
∫

|u(x)|2 dx =
1

2π

n ∑
n∈Zn

|û(m)|2.

For u ∈ H1(Rn) and supp u ⊂ B(0, 1), then u ∈ L2 and ∂αu ∈ L2, for all |α| = 1,

∥∂αu∥2L2 = (2π)n
∑
m∈Zn

|∂̂αu(m)|2 = (2π)−n
∑
m∈Zn

|mαû(m)|2.

Claim: Under these assumptions, ∥u∥2H1 = Θ(
∑

m∈Zn⟨m⟩2|û(m)|2)

13
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Recall the following:

� GNS inequality: For U ⋐ Rn, ∂U ∈ C1, 1 ≤ p < n, p∗ = np
n−p > p,

∥u p∗ ≤ C(∥u∥p + ∥∇u∥p).

� R-K Theorem: For 1 ≤ p < n, 1 ≤ q < p∗,

W 1,p(U) ⊂ Lq(U)

is compact: If we have {un} ⊂ W 1,p(U) and ∥un∥W 1,p ≤ C, there exists a subse-
quence unk

, u ∈ Lq such that ∥unk
− u∥q → 0.

5.1 Rellich-Kondrachov, continued

Last time, we considered the special case of {un} ⊂ H1(Rn) such that supp un ⊂ B(0, R)
and ∥un∥H1 ≤ C, which implies that there exists a subsequence unk

and u ∈ L2(Rn) such
that ∥un − u∥L2 → 0. We continue the proof of the special case.

Proof. Recall that we showed that if u ∈ C∞
0 ((−π, π)n), we can write u(x) = (2π)−n

∑
û(n)ein·x.

Then ∫
u(x)v(x) dx =

1

(2π)n

∑
û(n)v̂(n)

and ∫
|∇u(x)|2 dx =

1

(2π)n

∑
|n|2|û(n)|2.

For u ∈ H1 with supp u ∈ B(0, 1),

∥u∥2H1 =
1

(2π)n

∑
⟨n⟩2|û(n)|2.

∥un∥2H1 =
∑
ℓ∈Zn

⟨ℓ⟩2|ûn(ℓ)|2 ≤ C.

∥v∥2L2 =
∑
ℓ∈Zn

|v̂(ℓ)|2.

We want to show that there exists nk such that ∥unk
− unp∥L2 → 0 as k, p→ ∞.

We introduce an operator Πpu(x) = (2π)−n
∑

|ℓ|≤p û(ℓ)e
iℓ·x. We can think of Πp :

L2([−π, π]n) → CNp . Np can be found through combinatorial methods(left as an exer-
cise)[should be

(
n+p
p

)
or something like that].

We have the following estimate:

∥(I − Πp)u∥2 ≤ ⟨p⟩−2∥u∥2H1 .

This is because

(2π)−n
∑
|ℓ|>p

|û(ℓ)|2 = (2π)−n
∑
|ℓ|>p

⟨ℓ⟩−2⟨ℓ⟩2|û(ℓ)|2 ≤ ⟨p⟩−2∥u∥2H1 .

Now, we find the Cauchy subsequence.

14
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1. For all p, we have ∥Πpun∥CNp ≤ ∥un∥2 ≤ ∥un∥H1 ≤ C. Then {|z| ≤ C} ⊂ CNp is
compact. It follows that we can choose subsequences {np+1

k } ⊂ {upk} such that
Πpu

p
k converges and lim supk,ℓ ∥u

p
k − upℓ∥ ≤ C⟨p⟩−2, which follows from the triangle

inequality. [let uba = unb
a
]

2. We choose nk = nkk. It follows that lim supk,ℓ→∞ ∥unk
− unℓ

∥2 = 0, since

5.2 Morrey’s Inequality

Theorem 11 (Morrey’s Inequality)

Suppose u ∈ Lp(Rn),∇u ∈ Lp(Rn) and n < p ≤ ∞. Then there exists u∗ ∈ C0,γ(Rn),
with γ = 1− n

p
such that u = u∗ almost everywhere and ∥u∗∥C0,γ ≤ ∥u∥p + ∥∇u∥p.

Remark 5.1. Recall

∥u∥C0,γ = sup |u(x)|+ sup
x ̸=y

|u(x)− u(y)|
|x− y|γ

.

Proof. We use the Littlewood-Paley Decomposition.

Lemma 5.2 (Dyadic Partitions of Identity)

There exists a function ψ0 ∈ C∞
c (R), ψ ∈ C∞

c (R \ {0}) such that

ψ0(ξ) +
∞∑
j=0

ψ(2−j|ξ|) = 1.

Proof. Choose φ0 ∈ C∞
c ((−1, 1)) with 0 ≤ ψ0 ≤ 1 and φ0(p) = 1, |p| ≤ 1/2.

Choose a new function
φ1(p) =

∑
j∈Z

φ0(p− j) ≥ 1.

Note that φ1(p− k) = φ1(p) for k ∈ Z. Choose φ(p) = φ0(p)
φ1(p)

.
Then ∑

j∈R

φ(p− j) =
∑ φ0(p− j)

φ1(p− j)
=

1

φ1(p)

∑
φ0(p− j) = 1.

Define ψ(r) = φ( log r
log 2

) for positive r. Notice that ψ ∈ C∞
c ((0,∞)). This gives that∑

j∈Z

ψ(2−jr) = 1.

Define ψ0(r) = 1−
∑∞

j=0 ψ(2
−jr). Note that ψ0(r) = 1 for r < 1/2 and ψ0(r) = 0 for

r > 1. It follows that ψ0 and ψ satisfy the conditions.

We can extend the Dyadic Partitions of Identity in Rn in the natural way. We then
define the Littlewood-Paley Decomposition as

u = ψ0(D)u+
∞∑
j=1

ψ(2−jD)u

15
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where for a ∈ L∞(Rn), a(D)u = F−1(a(ξ)û(ξ)) where Dx = 1/i∂x and D̂u = ξû.

16
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6.1 Morrey’s Inequality, continued

Recall the statement of the theorem.

Theorem 12 (Morrey’s Inequality)

Suppose u ∈ Lp(Rn),∇u ∈ Lp(Rn) and n < p ≤ ∞. Then there exists u∗ ∈ C0,γ(Rn),
with γ = 1− n

p
such that u = u∗ almost everywhere and ∥u∗∥C0,γ ≤ ∥u∥p + ∥∇u∥p.

Proof. Recall for u ∈ S(R), D̂xju(ξ) = ξjû(ξ) where Dxj =
1
i
∂xj .

We define a Fourier multipler a ∈ L∞(Rn) so that a(D)u = F−1(a(ξ)û(ξ)) for u ∈ S.
Note that for a ∈ L∞, ∥a(D)u∥L2 ≤ sup |a|∥u∥L2 . For ψ ∈ S(Rn), if we take u ∈ S ′, then
ψ(D)u ∈ S ′ , and ψ(ξ)û(ξ) ∈ S ′.
Recall the Littlewood - Paley Decomposition. We had a lemma: there exists ψ0 ∈

C∞
c (R) and ψ ∈ C∞

c (R \ {0}) such that for all ξ ∈ Rn,

ψ0(|ξ|) +
∞∑
j=0

ψ(2−j|ξ|) = 1.

Slightly abusing notation, we will write ψ0(ξ) = ψ0(|ξ|) and ψ(ξ) = ψ(|ξ|).
The full L-P Decomposition is given as follows: given u ∈ S ′, a = ψ0(D)u +∑∞
j=1 ψ(2

−jD)u. We will write h = 2−j as a shorthand.

Lemma 6.1

Suppose χ ∈ C∞
c (Rn). Then for u ∈ S(Rn), ∥χ(hD)u∥L∞ ≤ Ch−n/p∥u∥Lp and

∥χ(hD)u∥Lp ≤ (2π)−n∥χ̂∥1∥u∥p.

Proof. Recall the following inequalities

� Holder’s Inequality: ∥fg∥1 ≤ ∥f∥p∥g∥q for 1/p+ 1/q = 1 for 1 ≤ p ≤ ∞.

� Minkowski’s Inequality: ∥f + g∥p ≤ ∥f∥p + ∥g∥p and∥∥∥∥∫ F (x, t) dt

∥∥∥∥
p

≤
∫

∥F (·, t)∥p dt.

� Young’s inequality: ∥f ∗ g∥p ≤ ∥f∥1∥g∥p.

We have

χ(hD)u(x) = F−1(χ(hξ)û(ξ)) = (2π)−n
∫∫

ei(x−y)ξχ(hξ)u(y)dydξ

= (2πh)−n
∫
χ̂

(
x− y

h

)
u(y) dy

≤ (2πh)−n
C

hn
∥χ̂(·/h)∥q∥u∥p

17
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Then,

∥χ̂(·/h)∥q =
(∫

|χ̂(y/h)|q dy
)1/q

= hn/q∥χ̂∥q.

It follows that
|χ(hD)u(x)| ≤ Ch−n+n/q∥u∥p = Ch−n/p∥u∥p.

For the second inequality, note that χ(hD)u(x) = (2πh)nχ̂(·/h) ∗ u. Applying Young’s
Inequality,

∥χ(hD)u∥p ≤
1

(2πh)n
∥χ̂(·/h)∥1∥u∥p ≤

1

(2π)n
∥χ̂∥1∥u∥p.

Theorem 6.2

For u ∈ Lp, 1 ≤ p ≤ ∞, u ∈ C0,γ(Rn) if and only if for every χ ∈ C∞
c (Rn \ 0),

∥χ(hD)u∥∞ ≤ Chγ.

Proof. We start with the forward direction. Note that

χ(hD)u(x) =
1

(2πh)n

∫
χ̂((x− y)/h)u(y) dy

= (2π)−n
∫
χ̂(y)u(x− yh) dy

= (2π)−n
∫
χ̂(y)(u(x− yh)− u(x)) dy

So it follows that

|χ(hD)u(x)| ≤ C∥u∥C0,γ

∫
|χ̂(y)|(hy)γdy ≤ C∥u∥C0,γhγ

∫
|χ̂(y)||y|γ dy

and the last integral is bounded since χ̂ is a Schwartz function, so it follows that
|χ(hD)u(x)| ≤ C∥u∥C0,γhγ.

18
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7.1 Fourier Transform proof of Morrey’s Inequality

Recall the Littlewood-Paley decomposition: There exists ψ0 ∈ C∞
c (Rn), ψ ∈ C∞

c (Rn\{0})
such that

1 = ψ0(ξ) +
∞∑
j=0

ψ(2−jξ).

From this, we have for u ∈ S ′,

u = ψ0(D)u+
∞∑
j=0

ψ(2−jD)u.

More generally, for a ∈ S(Rn), a(D)u = F−1(a(ξ)û(ξ)). We were proving the following
theorem:

Theorem 7.1

For u ∈ Lp, 1 ≤ p ≤ ∞, u ∈ C0,γ(Rn) if and only if for every χ ∈ C∞
c (Rn \ 0),

∥χ(hD)u∥∞ ≤ Chγ.

Proof. We proved the forward direction last time. We now show the converse.
Denote

Λγ(u) = sup
0<h<1

h−γ(∥ψ(hD)u∥∞ +max ∥ψk(hD)u∥∞)

where ψk(ξ) = ξkψ(ξ).
We have the hypothesis: ∥u∥p + Λγ(u) < ∞. We want to show that ∥u∥Cγ ,0 ≤

C(∥u∥p + Λγ(u)). We first bound ∥u∥∞. Note that

∥u∥∞ ≤ ∥ψ0(D)u∥∞ +
∑
j

∥ψ(2−jD)u∥∞

≤ ∥ψ0(D)u∥∞ +
∑
j

2−jγΛγ(u)

≤ C∥u∥p + (2γ − 1)−1Λγ(u).

Now, we bound the quotient term, |u(x)− u(y)|/|x− y|γ. In order words, we want

|u(x)− u(y)| ≤ C(∥u∥p + Λγ(u))r
γ,

if |x− y| ≤ r.
Note that

u(x)− u(y) = ψ0(D)u(x)− ψ0(D)u(y) +
∑
j

(
ψ(2−jD)u(x)− ψ(2−jD)u(y)

)

It is enough to prove that |ψ0(D)u(x)− ψ0(D)u(y)| ≤ Crγ∥u∥p and

∞∑
j=0

|ψ(2−jD)u(x)− ψ(2−jD)u(y)| ≤ CrγΛγ(u).
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Note that

|ψ0(D)u(x)− ψ0(D)u(y)| ≤ sup(∇(ψ0(D)u))|x− y|

≤ |x− y| 1

(2π)n
sup

∫
∇|ψ̂0(x− y)||u(y)| dy

≤ |x− y| 1

(2π)n
∥∇ψ̂0∥q∥u∥p.

For the second inequality, we prove for both high frequency and low frequency estimates.
For the high ones,

|ψ(hD)u(x)− ψ(hD)u(y)| ≤ 2∥ψ(hD)u∥∞ ≤ 2hγΛγ(u).

For low frequencies,

|ψ(hD)u(x)− ψ(hD)u(y)| ≤ Crmax
k

∥Dxkψ(hD)u∥∞

= Crh−1max
k

∥hDxkψ(hD)u∥∞

= Crh−1max
k

∥ψk(hD)u∥∞

≤ Crh−1max
k

∥ψk(hD)u∥∞

≤ Crhγ−1Λγ(u).

Then, note that ∑
2j≤s

Cr2−j(γ−1) ≤ C ′rs1−γ

and ∑
2j>s

C2−jγ ≤ C ′′s−γ.

It follows that

∞∑
j=0

|ψ(2−jD)u(x)− ψ(2−jD)u(y)| ≤ CΛγ(u)(rs
1−γ + s−γ) ≤ CrγΛγ(u)
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8.1 Finishing Morrey’s Inequality

The original statement of the theorem.

Theorem 13 (Morrey’s Inequality)

Suppose u ∈ Lp(Rn),∇u ∈ Lp(Rn) and n < p ≤ ∞. Then there exists u∗ ∈ C0,γ(Rn),
with γ = 1− n

p
such that u = u∗ almost everywhere and ∥u∗∥C0,γ ≤ C(∥u∥p+∥∇u∥p).

Last time, we showed the following theorem:

Theorem 14

For u ∈ Lp, 1 ≤ p ≤ ∞, u ∈ C0,γ(Rn) if and only if for every χ ∈ C∞
c (Rn \ 0),

∥χ(hD)u∥∞ ≤ Chγ.

Recall that
Λγ(u) = sup

0<h<1
h−γ(∥ψ(hD)u∥∞ +max ∥ψk(hD)u∥∞)

where ψk(ξ) = ξkψ(ξ). We proved this by showing that ∥u∥C0,γ ≤ C(∥u∥p + Λγ(u)). We
now show the complete proof of Morrey’s Inequality.

Proof. It suffices to show that Λγ(u) ≤ C∥∇u∥p. Recall that for all χ ∈ C∞
c (Rn), we

showed that ∥χ(hD)u∥ ≤ Ch−n/p∥u∥p. Note that

∥φ(hD)hDxju∥∞ ≤ ch1−n/p∥∇u∥p
⇒ ∥φj(hD)u∥∞ ≤ Chγ∥∇u∥p.

We would like to write ψ ∈ C∞
c (Rn \ {0}), ψ(ξ) =

∑
ξjχj(ξ) with χj ∈ C∞

c . We can

do this with
∑
ξj

ξj
|ξ|2ψ(ξ).

It follows that

∥ψ(hD)u∥∞ ≤
∞∑
j=1

∥ξjχ(hD)u∥∞ ≤ Chγ∥∇u∥p.

We can use this result to show regularity properties for solutions to PDEs. For example,
one statement is as follows: suppose u ∈ L1, ∆u = f ∈ Ck,γ for 0 < γ < 1. We could
show that u ∈ Ck+2,γ.

8.2 Final Comments about Sobolev Spaces

Definition 8.1. Suppose U ⊂⊂ Rn with ∂U ∈ C1. Then W 1,p
0 (U) = C∞

c (U) where the
closure is respect to the W 1,p norm.

Fact 8.2. W 1,p
0 = {u ∈ W 1,p(U) : Tu = 0}, where T : W 1,p(U) → Lp(∂U) linear and

bounded and for u ∈ W 1,p(U) ∩ C(U), Tu = u|∂U .

Fact 8.3 (Poincare Inequality). Suppose 1 ≤ p < n and 1 ≤ q ≤ p∗ = np
n−p . Then

∥u∥q ≤ C∥∇u∥p.

21



Vishal Raman (May 10, 2023) Math 222b

Theorem 15 (Poincare Inequality(v2))

For all 1 ≤ p ≤ ∞, ∥u∥p ≤ C∥u∥p.

Proof. Suppose p < n. This follows from the version 1. Suppose ∞ > p ≥ n. In this
case, take q = n− ϵ. Then q∗ = (n−ϵ)n

ϵ
. Choose small enough ϵ so that q∗ ≥ p. Then, we

apply Poincare 1: ∥u∥p ≤ ∥u∥q∗ ≤ C∥∇u∥q ≤ C∥∇u∥p. For p = ∞, the result follows
from Morrey’s inequality.

8.3 Duality

Recall the Riesz Representation Theorem for Hilbert Spaces:

Theorem 16 (Riesz Representation)

For Φ : H → C with a Hilbert space H, if |Φ(u)| ≤ C∥u∥, there exists v ∈ H such
that Φ(u) = ⟨u, v⟩.

Fact 8.4. H−s(Rn) = (Hs(Rn))∗: if u ∈ H−s(Rn) and v ∈ Hs(Rn), u ∈ Hs(Rn), then
⟨u, v⟩L2 =

∫
uv is well defined, and for any Φ : Hs(Rn) → C such that |Φ(u)| ≤ C∥u∥Hs ,

there exists v ∈ H−s such that Φ(u) = ⟨u, v⟩L2 .

Proof. First assume u, v ∈ S. Then∫
uv = (2π)n

∫
û(ξ)v̂(ξ) = (2π)n

∫
⟨ξ⟩s⟨ξ⟩−sv̂(ξ)

so it follows that
|⟨u, v⟩|2 ≤ (2π)n∥u∥Hs∥v∥H−s .

Conversely, suppose we have Φ as above. Riesz implies that

Φ(u) = ⟨u,w⟩Hs = (2π)−n
∫
⟨ξ⟩2sûŵ = (2π)−n

∫
û⟨ξ⟩2sŵ

and we finish by setting v̂ = ⟨·⟩2sŵ.

8.4 Duality on Bounded Domains

We define H−1(U) = {u ∈ D′(U) : ∀φ ∈ C∞
c (U), |u(φ)| ≤ C∥φH1}. The norm on H−1 is

given by
∥u∥H−1(U) = sup{|u(φ)| : φ ∈ H1

0 , ∥φ∥H1 ≤ 1},

which is the usual operator norm, treating u as a linear functional on H1(U).

22



Vishal Raman (May 10, 2023) Math 222b

Example 8.5

We claim

H1
0 ((0, π)) = {u(x) =

∞∑
n=1

an sinnx :
∑

|an|2n2 <∞ ∼ ∥u∥H1}.

Then,

H−1((0, π)) = {v(x) =
∞∑
n=1

an sinnx :
∞∑
n=1

|an|2n−2 <∞},

where we take convergence in the sense of distributions.
Then,

⟨u, v⟩ =
∑

anbn =
∞∑
n=1

nann
−1bn ≤ ∥u∥H1∥v∥H−1 .
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9.1 Calculus of Variations: Minimizing Distance in the Plane

We start with a motivating example. Take points a, b in the x-axis, c, d in the y-axis. We
wish to find a function y = f(x) such that f(a) = c, f(b) = d and the graph of f has the
shortest length. Recall that

L(f) =

∫ b

a

(1 + f ′(x)2)1/2 dx.

We wish to minimize L over all paths from a to b. If f is a minimizer, then for all
φ ∈ C∞

c ((a, b)), L(f + tφ) has a minimum at t = 0. This implies that d
dt
L(f + tφ)|t=0 = 0

for all φ as above. Then,

d

dt
L(f + tφ) =

d

dt

∫ b

a

(1 + (f + tφ)′2)1/2 dx∫ b

a

∂

∂t
[(1 + (f + tφ)′2)1/2] dx

=

∫ b

a

φ′(x)(f ′(x) + tφ′(x))

(1 + (f ′(x) + tφ′(x)2)1/2

Applying t = 0, we have

0 =

∫ b

a

φ′(x)
f ′(x)

(1 + f ′(x)2)1/2
dx

for all φ ∈ C∞
c ((a, b)).

Integrating by parts, we get that∫ b

a

φ(x)

(
f ′(x)

(1 + (f ′(x))2)1/2

)′

dx = 0.

The implies that
d

dx

(
f ′(x)

(1 + f ′(x)2)1/2

)
= 0,

with f(a) = c, f(b) = d.
We find that f ′(x) = α so f(x) = αx+ β.

9.2 Calculus of Variations: Minimizing Area in R3

Take U ⊂⊂ R2, ∂U ∈ C1. We wish to minimize the area of the graph with the condition
that f = g on ∂U .
We have

A(f) =

∫∫
U

(1 + |∇f(x)|2)1/2 dx.

We wish to minimize A(f) over f satisfying f = g on ∂U .
If f is a minimizer, t 7→ A(f + tφ), φ ∈ C∞

c (U) has a minimum at t = 0. So,

d

dt
A(f + tφ)|t=0 = 0.
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Doing the same calculation as before, we have

d

dt
A(f + tφ)|t=0 =

∫
U

∂

∂t
(1 + |∇f + t∇φ|2)1/2 dx

=

∫
U

∇φ · ∇f
(1 + |∇f |2)1/2

dx

=

∫
U

φ

[(
fx1

(1 + |∇f |2)1/2

)
x1

+

(
fx2

(1 + |∇f |2)1/2

)
x2

]
dx.

As before, this implies that(
fx1

(1 + |∇f |2)1/2

)
x1

+

(
fx2

(1 + |∇f |2)1/2

)
x2

= 0.

This is called the Minimal Surface Equation.
We will not solve this, but how could we do it? Consider f ∈ H1(U), and note that

Tf = g ∈ L2(∂U) is well-defined. If we take m = inf{A(f) = f ∈ H1(U), f |∂U = g}.
Then, there exists fj ∈ H1(U), fj|∂U = g with A(fj) → m. Could we find fjk → f?

9.3 Calculus of Variations: General Setup

Take U ⊂⊂ Rn. Take L : Rn × R× U → R in C∞, written as L(p, z, x). We introduce
the functional I[w] =

∫
U
L(Dw(x), w(x), x) dx, with w|∂U = g.

Example 9.1

In the minimal surface problem, L(p, z, x) = (1 + |p|2)1/2.

We first derive an equation satisfied by the minimizer. As before, we have I[w] =∫
U
L(Dw,w, x) dx, a minimizer. This implies that d

dt
I[w+ tφ]|t=0 = 0 for all φ ∈ C∞

c (U).
Then,∫
U

d

dt
[L(Dw + tDφ,w + tφ, x)] dx|t=0 =

∫
U

(Dφ ·DpL(Dw,w, x) + φDzL) dx

=

∫
U

(
−
∑

(Lpj(Dw,w, x))xj +DzL(Dw,w, x)
)
φdx

=⇒ −
n∑
j=1

(Lpj(Dw,w, x))xj +DzL(Dw,w, x) = 0 ,

the Euler-Lagrange Equation.

Example 9.2

Take L(p, z, x) = |p|2/2− f(x)z.

I[w] =

∫
U

(
|∇w(x)|2/2− f(x)w(x)

)
dx.

Since Lpj = pj, the Euler-Lagrange equation is given by

−
∑

(wxj)xj − f(x) = 0 =⇒ −∆w = f, w|∂U = g.
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We can generalize this as follows: If we take L = |p|2/2 + F (z) and f(z) = F ′(z).
The Euler-Lagrange equation is then −∇w = f(w). For example, if we take f(z) = zp,
F (z) = zp+1

p+1
.

We could also take non-constant coefficients: L(p, z, x) = 1
2

∑
aij(x)pipj−f(x)z, where

aij = aji.
Then, Lpj =

1
2

∑n
i=1 aij(x)pi. Then, the Euler-Lagrange equation is given by

−
n∑

i,j=1

∂xj(aij∂xiw(x)) = f(x).

When
∑
aij(x)ξiξj ≥ c|ξ|2 for all ξ ∈ Rn, x ∈ U , this is solvable.

9.4 Existence of Minimizers

� Coercivity: There exists α.0, β ≥ 0 with L(p, z, u) ≥ α|p|q − β, for 1 < q <∞, for
all z ∈ R, x ∈ U .

The condition gives the following bound: I[w] ≥ α∥Dw∥qq − βµ(U). We can always
set β = 0 by translating L by a constant. Taking A = {w ∈ W 1,q(U) : u|∂U = g},
we minimize I[w] over A.

� Lower semicontinuity: Suppose we have uk ⇀ u weakly in W 1,q. Then,

I[u] ≤ lim inf I[uk].
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Recall, we have L : Rn × R× U → R for U ⋐ Rn, ∂U ∈ C1. We denote L = L(p, z, x),
DpL = (∂p1L, . . . , ∂pnL), etc. We also defined

I[w] =

∫
U

L(Dw(x), w(x), x) dx, w|∂U = g.

As an example, L(p, x) = 1
2

∑
aij(x)pipj − f(x)z. Last time, we used the principle

that if w is a minimizer, for every φ ∈ C∞
c (U), t 7→ I[w + tφ] has a local minimum at

t = 0. This implies that if w is a minimizer, L satisfies the Euler-Lagrange equation:

−
n∑
j=1

(Lpj(Dw,w, x))xj +DzL(Dw,w, x) = 0.

10.1 Second-Derivative Test

If i′(0) = 0, i′′(0) > 0, then we have a local minimum at 0.
By definition i(t) = I[w + tφ], where φ ∈ C∞

c . Recall that

i′(t) =

∫ (∑
φxj∂pjL(Dw + tφ, w + tφ, x) + φ∂zL(Dw + tφ, w + tφ, x)

)
dx.

Then,

i′′(0) =

∫ (∑
i,j

φxjφxi∂pjpiL+
∑
j

φφxj∂z∂pjL+ φ2Lzz

)
dx

If this is at least 0 for all φ, what do we get about L? This makes sense for φ that is
Lipschitz and 0 at the boundary. If we choose φ(x) = ϵρ(xξ

ϵ
)ζ(x), where ζ ∈ C∞

c (U) and
ρ consists of triangles with slope ±1 starting at 0. Then |ρ′(x)| = 1 almost everywhere.
Using this φ, we get φxj = ϵρ(xξ/ϵ)ζ ′(x) + ξjρ

′(xξ/ϵ)ζ(x) = ξjρ
′(xξ/ϵ)ζ(x) +O(ϵ) and

0 ≤
∫
U

∑
i,j

(ξiξj∂
2
pipj

L)((ρ′)2ζ2) +O(ϵ)

ϵ→0−−→
∫
U

∑
i,j

(ξiξj∂
2
pipj

L)(ζ2)

for any ζ ∈ C∞
c (U), so it follows that for all ξ ∈ Rn,

∑
ξiξjLpipj(Dw(x), w(x), x) ≥ 0.

Hence, it is useful to assume convexity:

n∑
i,j

ξi, ξjLpipjL(p, z, x) ≥ 0

for all ξ ∈ Rn, (p, z, x) ∈ Rn × R× U . (

L(p+ tξ) = L(p) + t
∑

ξjLpjL(p) + t2
∫ 1

0

(1− s)
∑

ξiξjLpipj(p+ stξ) ds
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10.2 Convexity

For smooth L, convexity is the statement∑
Lpipj(p, z, x)ξiξj ≥ c|ξ|2 ≥ 0.

for all ξ ∈ Rn.

Example 10.1

for L = 1/2
∑
aij(x)pipj, aij = aji, convexity is that∑

aij(x)ξiξj ≥ c|ξ|2

We call this an Elliptic operator.

Example 10.2

For the minimal surface equation, L = (1 + |p|2)1/2. Note that Lpi =
pi

(1+|p|2)1/2 .

Lpipj =
δij

(1 + |p|2)1/2
− pipj

(1 + |p|2)3/2
=
δij(1 + |p|2)− pipj

(1 + |p|2)3/2
.

Then, ∑
Lpipjξiξj =

1

(1 + |p|2)3/2
(∑

|ξ|2(1 + |p|2)−
∑

ξipiξjpj

)
= (1 + |p|2)3/2(|ξ|2 + |ξ|2|p|2 − ⟨ξ, p⟩2) ≥ 0

This is not strictly convex, since as p→ ∞ our term goes to 0.

10.3 Existence of Minimizers

Recall our conditions:

� Coercivity: There exists α > 0, β ≥ 0 with L(p, z, u) ≥ α|p|q − β, for some
1 < q <∞, for all z ∈ R, x ∈ U .

The condition gives the following bound: I[w] ≥ α∥Dw∥qq − βµ(U). We can always
set β = 0 by translating L by a constant. Taking A = {w ∈ W 1,q(U) : u|∂U = g},
we minimize I[w] over A.

� Lower semicontinuity: Suppose we have uk ⇀ u weakly in W 1,q. Then,

I[u] ≤ lim inf I[uk].

As we will see, the coercivity leads to nice compactness results via Rellich-Kondrachov.
How can we use lower semicontinuity? Assume A is nonempty. Take m = infw∈mcA I[w].
Then, we have I[wj] → m. Assuming coercivity, we have ∥Dwj∥q is bounded. If
w0 ∈ A, then ∥w − w0∥q ≤ ∥Dw − Dw0∥q by the Poincare inequality. So it follows
that ∥wj∥q ≤ C. From the Banach-Alaoglu Theorem, we have wj is weakly compact in
W 1,q. Passing to a subsequence, wj ⇀ w in W 1,q. From lower semicontinuity, we have
I[w] ≤ lim inf I[wj] = m. This implies that I[w] = m.
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11.1 Weak Convergence

We have a Banach space B with dual B∗ with u : B → C linear in the dual if for all
x ∈ B, |u(x)| ≤ C∥x∥B.

Theorem 17 (Banach - Alaoglou)

The unit ball {u ∈ B∗ : ∥u∥B∗ ≤ 1} is weak-* compact: if we have ∥uj∥B∗ ≤ 1, then
there exists a subsequence and u ∈ B∗ such that for every x ∈ B, ujk(x) → u(x).

Corollary 11.1

If B is reflexive, (B∗)∗ = B, then {x : ∥x∥B ≤ 1} is weakly compact. Given ∥xj∥ ≤ 1,
there exists x ∈ B and a subsequence so that u(xjk) → u(x) for u ∈ B∗.

Example 11.2

Take B = Lq(U) for 1 < q < ∞. This is reflexive since B∗ = Lq
′
(U) with q−1 +

(q′)−1 = 1 for 1 < q′ <∞.

Remark 11.3. For uj ∈ B, we say xj ⇀ x ∈ B iff for all u ∈ B∗, u(xj) → u(x).

� If B reflexive and xj ⇀ x, then ∥x∥ ≤ lim inf ∥xj∥. This is because |x(u)| =
lim |xj(u)| ≤ lim inf ∥u∥B∗∥xj∥B and ∥x∥B = sup∥u∥B∗=1 |x(u)|.

� If B reflexive and xj ⇀ x, there exists C such that ∥xj∥B ≤ C. For every
u ∈ B∗, |xj(u)| ≤ C(u), which implies by the Uniform Boundedness Principle that
∥xj∥B ≤ C.

� (We don’t assume B is reflexive) Suppose V ⊂ B is a closed subspace. Then V is
weakly closed. This is a special case of Mazur’s Theorem.

Proof. We need to show that if xj ∈ V , xj ⇀ x ∈ B, then x ∈ V . For u ∈ B∗,
u(xj) → u(x). So if x ̸∈ V , we want to construct u ∈ B∗ so that u(xj) = 0 and
u(x) = 1.

Recall Hahn-Banach: If we have a subspace Ṽ ⊂ B and φ̃ : Ṽ → C with |φ̃(x)| ≤
C∥x∥B, with x ∈ Ṽ , then there exists φ ∈ B∗ so that φ|Ṽ = φ̃.

Take Ṽ = V + Cx. Define φ̃ : Ṽ → C and define φ̃(y + αx) = α, y ∈ V , α ∈ C. It
suffices to check that it is bounded. We need φ̃(y+αx) ≤ C∥y+αx∥. Suppose not
- for every n, there exists yn, αn such that |αn| = |φ̃(yn + αnx)| > n∥yn + αnx∥.
Dividing by αn, we get

1/n > ∥yn/αn + x∥B.

But this would imply that −yn/αn → x ̸∈ V , but V is closed.
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11.2 Calculus of Variations

We now move back to calculus of variations. We have I[w] =
∫
U
L(Dw(x), w(x), x) dx

with U ⋐ Rn, ∂UC1. We have L = L(p, z, x) ∈ C∞(Rn × R× U). We wish to minimize
L under the constraint that w|∂U = g.
Recall that we introduced i(t) = I[w + tφ], φ ∈ C∞

c (U). If w is a minimizer of I[w],
then

� i′(0) = 0 for all φ implies that −
∑n

j=1 ∂xj(∂pjL(Dw,w, x)) + ∂zL(Dw,w, x) =
0(Euler-Lagrange equation).

� If i′′(0) ≥ 0 for all φ, then we have the convexity condition: for all ξ ∈ Rn,∑
i,j ∂pi∂pjL(Dw,w, x)ξiξj ≥ 0.

We introduced the conditions:

� Coercivity: there exists 1 < q <∞, α > 0, β ≥ 0 such that L(p, z, x) ≥ α|p|q − β.
This implies that I[w] ≥ α∥Dw∥qq − β.

� (Weak) Lower semicontinuity: If uj ⇀ u and Duj ⇀ u weakly in Lq(U), then
I[u] ≤ lim inf I[uj].

Remark 11.4. Take A = {u ∈ W 1,q : u|∂U = g} ≠ ∅. If we put m = infA I[w], there is a
sequence wk ∈ A such that I[wk] → m. Using weak compactness, we have a subsequence
wkj ⇀ w in W 1,q with w ∈ A. Then m ≤ I[w] ≤ lim inf I[wjk ] = m, so I[w] = m.

11.3 Getting around Lower Semicontinuity

Theorem 18

Suppose L ≥ −C and p 7→ L(p, z, x) is convex for all (z, x) ∈ R× U . Then, for any
1 < q < ∞, w 7→ I[w] is weakly lower semicontinuous in W 1,q: if wj ⇀ w in Lq,
Dwj ⇀ Dw in Lq, then I[w] ≤ lim inf I[wj].

Remark 11.5. Convexity implies that for all p1, p2, L(p1) ≥ L(p2) +DpL(p2) · (p1 − p2).

Proof. We assume that uk ⇀ u in Lq and Duk ⇀ Du in Lq. We have ℓ = lim inf I[uk]
and we want I[u] ≤ ℓ.
By taking a subsequence, we can say that ℓ = lim I[uk]. By taking another subsequence,

we can say uk → u ∈ Lq, since weak convergence implies that ∥uk∥q ≤ C and ∥Duk∥q ≤ C
and using compactness of W 1,q in Lq. By taking a subsequence we can use uk → u almost
everywhere[this is the Riesz-Fisher theorem]. By Egorov’s Theorem, for every ϵ, there
exists a set Eϵ such that m(U \ Eϵ) ≤ ϵ so that uk → u uniformly on Eϵ. Note that
m(U) <∞.
We define a set Fϵ = {x ∈ U : |u(x)|+ |Du(x)| ≤ 1

ϵ
}. Then m(U \ Fϵ) → 0 as ϵ → 0.

We define Gϵ = Eϵ ∩ Fϵ, with m(U \Gϵ) ≤ m(U \ Eϵ) +m(U \ Fϵ) → 0 as ϵ→ 0.
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Without loss of generality, we can assume L ≥ 0. Note that

I[uk] =

∫
U

L(Duk, uk, x)

≥
∫
Gϵ

L(Duk, uk, x)

≥
∫
Gϵ

L(Du, uk, x) +DpL(Du, uk, x)(Duk −Du) dx

Then, lim
∫
Gϵ
L(Du, uk, x) =

∫
Gϵ
L(Du, u, x) since uk → u uniformly on Gϵ and Du is uni-

formly bounded on Gϵ. For the second term, DpL(Du, uk, x) → DpL(Du, u, x) uniformly
on Gϵ. Then Duk ⇀ Du in Lq. Then writing

∫
(DpL(Du, uk, x)−DpL(Du, u, x))(Duk−

Du) +DpL(Du, u, x) · (Duk −Du), Duk −Du is bounded in Lq and (DpL(Du, uk, x)−
DpL(Du, u, x)) converges uniformly to 0, so the first term goes to 0. For the second term,
DpL(Du, u, x) is bounded and Duk −Du converges weakly to 0.
It follows that

ℓ = lim inf I[uk] ≥
∫
Gϵ

(Du, u, x) dx
ϵ→0−−→

∫
U

L(Du, u, x) dx = I[u].

Hence, I[u] ≤ lim inf I[uk], as desired.
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12.1 Existence of Minimizers

We proved last time that a convexity condition was sufficient for showing the weak lower
semicontinuity condition.

Example 12.1

A simple example is L(p, z, x) =
∑
aij(x)pipj where aij = aji and

∑
aij(x)ξiξj ≥

θ|ξ|2. for all ξ ∈ Rn, x ∈ U . In this case, A = {u ∈ H1(U) : u|∂U = g}, if
g ∈ H1/2(∂U). Then, we minimize

∫
U

∑
aij(x)∂xju∂xiu dx = 0 with u|∂U = g.

Theorem 19 (Existence of Minimizers)

Suppose p 7→ L(p, z, x) is convex and L(p, z, x) ≥ α|p|q−β, α > 0, β ≥ 0, 1 < q <∞.
Suppose that A = {w ∈ W 1,q(U) : w|∂U = g} ≠ ∅ with g ∈ Lq(∂U), then there exists
u ∈ A such that I[u] = minw∈A I[w].

Proof. We can assume without loss of generality that β = 0. Put m = infA I[w] ̸= ∞.
Choose a sequence uk ∈ A such that I[uk] → m. Then I[uk] ≥ α

∫
|Duk|q. This implies

that ∥Duk∥Lq ≤ C.
Fix w ∈ A and note that uk − w ∈ W 1,q

0 . Recall the Poincare Inequality: if v ∈ W 1,q
0 ,

then ∥v∥q ≤ C∥Dv∥q. Hence

∥uk∥q ≤ ∥uk − w∥q + ∥w∥q ≤ ∥Duk −Dw∥q + ∥w∥q ≤ ∥Duk∥q + ∥w∥W 1,q ≤ C ′.

This implies that ∥uk∥W 1,q ≤ C. Hence, there exists a subsequence uk ⇀ u in W 1,q.
This means that uk − w ⇀ u− w in W 1,q but uk − w ∈ W 1,q

0 , a closed subspace in W 1,q

which implies that u − w ∈ W 1,q
0 . Hence, u ∈ A. So, it suffices to show that u is a

minimizer.
From the convexity of p 7→ L(p, z, x), we have I is weakly lower-semicontinuous. In

other words, I[u] ≤ lim infk→0 I[uk] = infw∈A I[w]. Hence, I[u] = infw∈A I[w].

12.2 Uniqueness of Minimizers

Theorem 20 (Uniqueness of Minimizers)

Suppose L = L(p, x) and there exists θ > 0 such that for all ξ ∈ Rn, p ∈ Rn, x ∈ U ,
we have

∑
Lpipj (p, x)ξiξj ≥ θ|ξ|2(uniform convexity). Then, any minimizer of I[u] is

unique.

Proof. We have that L(p, x) ≥ L(q, x) ≥ DpL(q, x)(p − q) + θ
2
|p − q|2 from strict con-

vexity(this follows from the Taylor remainder). Let u, ũ be minimizers of I[w]. Take
v = u+ũ

2
. From strict convexity, we have

I[u] ≥ I[v] +

∫
DpL(Du/2 +Dũ/2, x)(Du/2−Dũ/2) + θ/8|Du−Dũ|2 dx.
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Similarly,

I[ũ] ≥ I[v] +

∫
DpL(Du/2 +Dũ/2, x)(Dũ/2−Du/2) + θ/8|Du−Dũ|2 dx.

Then,

m = I[u]/2 + I[ũ]/2 ≥ I[v] + θ/8

∫
|Du−Dũ|2 dx ≥ m+ θ/8

∫
|Du−Dũ|2 dx.

This would imply that θ/8
∫
|Du−Dũ|2 dx ≤ 0, which implies that Du = Dũ almost

everywhere but u|∂U = ũ|∂U so u = ũ almost everywhere.

12.3 The Euler-Lagrange Equation

Recall the example L(p, x) =
∑
aij(x)pipj ≥ θ|p|2 with aij = aji. This has the Euler-

Lagrange Equation:
n∑

i,j=1

∂xi(aij∂xju) = 0, u|∂U = g.

For all g ∈ H1/2(∂U) we can find u ∈ H1(U) such that the Euler-Lagrange equation
weakly(in the sense of distributions). Furthermore, u is unique. We will show this next
time.
Today, we show that we can solve the equation:

n∑
i,j=1

∂xi(aij∂xju) = f, u|∂U = g, f ∈ H−1(U)

with u ∈ H1(U). We can write

I[w] =

∫ ∑(
aij(x)∂xiw∂xjw − f(x)w

)
dx

In this case L(p, z, x) =
∑
aij(x)pipj − f(x)z for z ∈ R, so this is not bounded below.

However, p 7→ L(p, z, x) is convex. So it suffices to deal with the coercivity issue.
What we really need is that I[w] ≥

∫
U
|Dw|2 − β.

Recall the Peter Paul inequality:

2ab ≤ a2/ϵ+ ϵb2, ∀ϵ > 0.

Hence,

I[w] ≥ θ

∫
|Dw|2 −

∫
|f ||w| ≥ θ

∫
|Dw|2 − 1

2ϵ

∫
|f |2 − ϵ

2

∫
|w|2.

If we fix w0 ∈ H1 with w0|∂U = g ∈ H1/2, we have

I[w] ≥ θ

∫
|Dw|2− 1

2ϵ

∫
|f |2− ϵ

2

(∫
|w − w0|2 +

∫
|w0|2

)
≥ θ

∫
|Dw|2− C

2ϵ
− ϵ

2
|Dw|2.

It follows that

I[w] ≥ θ

∫
|Dw|2 − Cϵ − ϵ

∫
|Dw|2 = (θ − ϵ)

∫
|Dw|2 − Cϵ.
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Choosing ϵ < θ/2, we have

I[w] ≥ θ

2

∫
|Dw|2 − Cϵ ≥ α

∫
|Dw|2 − C.

One problem: we assumed f ∈ L2. How do we fix this? We solve 2 problems:∑
(aijuxj)xi = f ∈ H−1, u|∂U = 0,

and u ∈ H1
0 (U). Then,

∫
fu ≤ ∥f∥H−1∥u∥H1

0
≤ 1

ϵ
∥f∥2H−1 + ϵ∥u∥H1

0
. For u ∈ H1

0 ,
∥u∥H1

0
≤ C∥Du∥2. Then, we apply the same argument.

If not, we take v = u− ũ and we have

−
∑

(aijvxj)xi = 0, v ∈ H1
0 (U).

Otherwise, we multiply by v and we use the definition of weak solution. This implies
that

∫ ∑
aijvxivxj , but it is also at least θ

∫
|Dv|2, which shows that it is exactly zero.
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13 March 2nd, 2021

Today, we find conditions on the Lagrangian so that the the E-L condition holds:

−
∑

(∂pjL(Du(x), u(x), x))xj + ∂zL(Du, u, x) = 0.

13.1 Euler-Lagrange Equation, continued

We will make the following assumptions: for all p ∈ Rn, z ∈ R, x ∈ U ,

� |L(p, z, x)| ≤ C(|p|q + |z|q + 1),

� |DpL|, |DzL| ≤ C(|p|q−1 + |z|q−1 + 1).

It is natural to consider the E-L equation in a weak sense, that is for all v ∈ C∞
c (U),∫ ∑

∂pjLvxj + ∂zLv = 0.

The conditions imply that |∂pjL| ≤ C(|Du|q−1 + |u|q−1) ∈ Lq
′
(U), and the same with

∂zL. This implies that our integral condition would make sense for v ∈ W 1,q
0 (U).

Definition 13.1. Suppose our assumptions from above hold(bounds on |L| and |DL|)
and u ∈ A = {w ∈ W 1,q(U) : w|∂U = g}. We then say that the E-L equation holds
weakly if for all v ∈ W 1,q

0 (U), we have∫ ∑
∂pjLvxj + ∂zLv = 0.

Theorem 21

Suppose u ∈ A is a minimizer for L satisfying the bounds. Then u is a weak solution
to the Euler Lagrange equation.

Proof. Define i(t) = I[u+ tv] where v ∈ W 1,q
0 . Let

i(t)− i(0)

t
=

∫
U

L(Du+ tDv, u+ tv, x)− L(Du, u, x)

t
dx

and call the integrand Lt(x).

We have that Lt(x)
t→0−−→

∑
Lpi(Du, u, x)vxi + Lzv almost everywhere in x. We want

to bound |Lt(x)| by a function in L1 so that we can apply the dominated convergence
theorem.
Note that f(ξ + tη)− f(ξ) = η

∫ t
0
f ′(ξ + tη) dt.This means that

L(Du+ tDv, u+ tv, x)− L(Du, u, x) =

∫ t

0

∑
Lpj(Du+ sDv, u+ sv, x)vxj + Lzv ds.
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Now, we bound this using our assumptions. Namely, recall that |DL| ≤ C(|p|q−1 +
|z|q−1 + 1). It follows that

|L(Du+ tDv, u+ tv, x)− L(Du, u, x)| ≤
∫ t

0

∑
|Lpj(Du+ sDv, u+ sv, x)vxj |+ |Lzv| ds

≤ C

∫ t

0

(|Du+ sDv|q−1 + |u+ sv|q−1 + 1)(|Dv|+ |v|) ds

≤ C

∫ t

0

(1 + |Du|q−1 + |Dv|q−1 + |u|q−1 + |v|q−1)(|Dv + |v||) ds

≤ Ct
(
|Du|q−1(|Dv|+ |v|) + |u|q−1(|Dv|+ |v|) + |Dv|q + |v|q + 1

)
We would like to say(
|Du|q−1(|Dv|+ |v|) + |u|q−1(|Dv|+ |v|) + |Dv|q + |v|q + 1

)
≤ C (|Du|q + |u|q + |Dv|q + |v|q + 1) .

We do this via Young’s inequality: ab ≤ aq
′

q′
+ bq

q
. This implies that

|Du|q−1|Dv| ≤ C(|Du|(q−1)q′ + |Dv|q),

and doing this for the other product terms gives the desired inequality.
It follows that |Lt(x)| is bounded by an L1 function, so we can apply the dominated

convergence theorem, which gives the result.

Remark 13.2. The converse is not necessarily true. However, we have the following
theorem:

Theorem 22

Suppose u ∈ A is a weak solution to the Euler-Lagrange equation. If (p, z) 7→
L(p, z, x) is convex for all x ∈ U , then u is a minimizer.

Proof. From convexity, we have that L(p, z, x)+DpL(p, z, x)·(q−p)+DzL(p, z, x)(w−z) ≤
L(q, w, z). Upon integrating, if we set p = Du, q = Dw, z = u, w = w(x) for w ∈ A:

I[u] +

∫
U

Dp(Du, u, x) · (Dw −Du) +DzL(Du, u, x) · (w − u) dx ≤ I[w].

But w − u ∈ W 1,q
0 and u weakly satisfies the equation so it follows that the integral is

0 and for every w ∈ A, I[u] ≤ I[w].
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14 March 4th, 2021

14.1 Regularity

We will make the assumption that L(p, z, x) = L(p) − zf(x). We also assume that
|L(p)| ≤ C(|p|2+1) and |DpL(p)| ≤ C(|p|+1), |D2

pL(p)| ≤ C. Finally, we assume strong
convexity:

∑
Lpipj(p)ξiξj ≥ θ|ξ|2 for all p, ξ ∈ Rn.

Example 14.1

L(p) = 1
2
|p|2 is an example of a function which satisfies the above conditions.

Last time, we showed (with weaker assumptions) that if I[u] is a minimum, then u
satisfies the E-L equation weakly. With a convexity condition, we have the converse as
well. We assume that u|∂U = 0 for simplicity.

Proposition 14.2

There exists a constant C = C(L, n, U) so that ∥u∥H1 ≤ C∥f∥2.

Proof. We use the weak E-L with v = u. Namely,∫
U

∑
Lpj(Du)uxj =

∫
U

fu.

Then, strict convexity implies that (DL(p)−DL(0)) · p ≥ θ|p|2, with p = Du. Hence,

θ

∫
U

|Du|2 ≤
∫
U

DpL(Du) ·Du−
∫
U

DL(0) ·Du =

∫
U

fu,

where the second term is 0 by the divergence theorem. Then

θ

∫
U

|Du|2 ≤
∫
U

fu ≤
∫
U

f 2

ϵ
+ ϵu2 = ∥f∥2/ϵ+ ϵ∥u∥2.

Hence, ∥Du∥22 ≤ 1
ϵθ
∥f∥2 + ϵ

θ
∥u∥2. By the Poincare inequality, ∥u∥2 ≤ C∥Du∥22, so it

follows that by taking epsilon small enough.

14.2 Interior Regularity

Theorem 23

Suppose that −
∑

(Lpj(Du))xj = f weakly, f ∈ L2, u ∈ H1
0 with the same bounds

as before. Then u ∈ H2
loc(U).

Proof. Take V ⋐ W ⋐ U open sets. Choose a function ζ ∈ C∞
c (W ) and ζ = 1 near V .

Choose Dh
ku(x) =

u(x+hek)−u(x)
h

. If h is small enough then it is well defined on U . Note

that for v ∈ C∞
c (W ),

∫
uD−h

k v = −
∫
vDh

ku. Then, we define v = −D−h
k (ζ2Dh

ku) ∈
H1

0 (W ) ⊂ H1
0 (U).

Then noting that (D−h
k v)xi = D−h

k (vxi),∫
U

∑
Dh
k(Lpi(Du))(ζ

2Dh
ku)xi = −

∫
U

fD−h
k (ζ2Dh

ku).
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Dh
k(Lpi(Du)) =

1

h

∫ 1

0

∑
j

Lpipj(sDu(x+ hek) + (1− s)Du(x)) ds · (Dxju(x+ hek)−Dxju(x))

=
n∑
j=1

ahij(x)D
h
kuxj(x)

where

ahij(x) =

∫ 1

0

Lpipj(sDu(x+ hek) + (1− s)Du(x)).

So, we have ∫
U

n∑
j=1

ahij(x)D
h
kuxj(ζ

2Dh
ku)xi = −

∫
U

fD−h
k (ζ2Dh

ku).

The left hand side is∫ ∑
ahijD

h
kuxjD

h
kuxiζ

2 +
∑

ahijD
h
kuxj2ζζxiD

h
ku.

The first term is bounded from below by θ|Dh
kDu|2ζ2 by strict convexity. The second

term is bounded by −
∫
ζ|Dh

kDu||Dh
ku| ≥ −ϵ

∫
ζ2|Dh

kDu|2 − 1
ϵ
|Dh

ku|2.
We end up with ∫

ζ2|Dh
kDu|2 dx ≤ C

∫
W

(f 2 + |Dh
ku|2).
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15 March 9th, 2021

15.1 Inner Regularity

Last time, we discussed regularity in the special case where L = L(p) − f(x)z. We
also assumed that |Dk

pL(p)| ≤ C(1 + |p|2−k) and strict convexity: for all p, ξ ∈ Rn,∑
Lpipj(p)ξiξj ≥ θ|ξ|2.
We know that for U ⋐ Rn, ∂U C1 and f ∈ L2, for all g ∈ H1/2(∂U), there exists u

such that for all v ∈ H1
0 (U),∫

U

(
∑

Lpj(Du)vxj − f(x)v) dx = 0, u|∂U = g.

Theorem 15.1

Suppose that −
∑

(Lpj(Du))xj = f weakly, f ∈ L2, u ∈ H1
0 with the same bounds

as before. Then u ∈ H2
loc(U).

Remark 15.2. The main idea in the proof is that you can estimate derivatives with cutoff
functions if you only need local results. This requires carefully choosing the width of the
quotients to stay away from the boundary.

Proof. We had a function Dh
ku(x) =

u(x+hek)−u(x)
h

, and we chose a ζ so that ζ ≡ 1 in V
and ζ ∈ C∞

c (W ) where V ⊂ W ⊂ U .
Then, we defined v = −D−h

k (ζ2Dh
ku). Last time, we showed that∫

U

∑
ahij(x)D

h
kuxj(ζ

2Dh
xu)xi =

∫
U

fD−h
k (ζ2Dh

ku),

where we have the bounds

θ|ξ|2 ≤
∑

ahij(x)ξiξj ≤ C|ξ|2.

Differentiating the expression, the LHS gives∫ ∑
ahij(x)(D

h
kuxjD

h
kuxi)ζ

2 +

∫ ∑
ahij(x)D

h
kuxj2ζζxiD

h
ku.

The first term is bounded below by θ
∫
U
|Dh

kDu|2ζ2. The second term is bounded below
by −C

∫
ζ|Dh

kDu||Dh
ku|.

Now, the RHS is bounded above by∫
W

|f ||D−h
k Du|ζ2 +

∫
W

|f |ζ|Dh
ku|.

Note that

Dh
ku =

∫ 1

0

uxk(x+ thek) dt.

So it follows that
∫
W
|Dh

kD
−h
k u|ζ2 ≤

∫
|Dh

kDu|ζ2. It follows that∫
W

|f ||Dh
kDu|ζ2 +

∫
W

|f |ζ|Dh
ku| ≤

2

ϵ

∫
|f |2 + ϵ

∫
|Dh

kDu|2ζ2 + ϵ

∫
ζ2|Dh

ku|2

≤ 2

ϵ

∫
|f |2 + ϵ

∫
ζ2|Dh

ku|2 + ϵ

∫
|Dh

kDu|2ζ2.
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By using Peter Paul on the LHS bound and making ϵ << 1, we obtain the inequality

θ/2

∫
|Dh

kDu|2ζ2 ≤ 2/ϵ

∫
|f |2 + ϵ

∫
ζ2|Dh

ku|2 ≤ 2/ϵ

∫
|f |2 + ϵ

∫
|Du|2.

Finally, we claim that
∫
|Dh

kw|2 ≤ C ⇒ wxk ∈ L2
loc. We know that Dh

kw is bounded in

L2 for all h, so it is weakly compact. Hence, D
hj
k w ⇀ v ∈ L2. It follows that∫

(Dh
kw)φ = −

∫
wD−h

k φ→ −
∫
wφxk =

∫
wxkφ,

which is the weak derivative.

15.2 Higher Regularity

Take f ≡ 0 and
∫
Lpi(Du)vxi = 0 for all v ∈ H1

0 . Take w ∈ C∞
0 (U) and set v = −wxk .

We have

−
∫ ∑

Lpi(Du)∂xk(wxi) dx.

But u ∈ H2
loc, so it follows that∫ ∑

i,j

Lpipj(Du)uxjxkwxi dx.

Setting ũ = uxk ∈ H1. We get that
∑
∂xj(aij(x)∂xiũ) = 0 where aij = Lpipj(Du). But

the bounded coefficients don’t give a strong enough condition to prove the result.

Theorem 15.3

Suppose that w ∈ H1
loc(U),

∑
∂xj (aij(x)∂xiw) = 0 weakly, and θ|ξ|2 ≤

∑
aij(x)ξiξj ≤

C|ξ|2. Then, there exists γ > 0 such that w ∈ C0,γ
loc (DeGiorgi-Nash, Moser). Applying

with w = ũ = uxk gives that u ∈ C1,γ
loc , which implies that aij = Lpipj(Du) ∈ C0,γ.

Finally, using Schauder estimates, we have that u ∈ C2,γ.
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16 March 11th, 2021

We follow the book Grigis-Sjostraund: Microlocal Analysis for Differential Operators.

16.1 Oscillatory Integrals

We denote X ⊂ Rn as an open set and D′(X) = {u : C∞
c (X) → C : ∀K ⊂⊂

X, ∃C,N, ∀φ ∈ C∞
c (K), |u(φ)| ≤ C sup|α|≤N |∂αφ|}.

We wish to generalize expressions like δ0(x) =
1

(2π)n

∫
eix·ξ dξ. This is an ”oscillatory

integral” in the sense that we are integrating something that oscillates rapidly. This
means that for all ψ ∈ C∞

c , δ0(ψ) = ψ(0) = (2π)−n
∫ ∫

eix·ξψ(x) dxdξ.
We change the phase of x · ξ to a function φ(x, θ) where x ∈ X, θ ∈ RN so that

φ(x, λθ) = λφ(x, θ) for λ > 0.
The amplitude (2π)−n is generalized to a(x, θ), and we try to consider which prop-

erties we need so that we can define I(a, φ) =
∫
RN a(x, θ)e

oφ(x,θ) dθ to be a distribu-
tion.

Example 16.1

Take X = Rn, N = n. Define P (ξ) to be a homogeneous polynomial satisfying
P (ξ) ̸= 0 whenever ξ ̸= 0. For example, we could take P (ξ) = |ξ|2. Define

χ ∈ C∞
c (Rn) so that χ ≡ 1 near zero. Take E(x) = (2π)−nχ(x)

∫
Rn

1−χ(ξ)
P (ξ)

eix·ξ dξ.
This doesn’t converge, but the integrand is a smooth homogeneous function of degree
−m away from zero. If we define Dx = ∂x/i, then

P (D)E(x) =
1

2π
χ(x)

∫
Rn

1− χ(ξ)

P (ξ)
P (ξ)eix·ξ + [P (D), χ]u

∫
Rn

1− χ

R
eixξ dξ,

where [P (D), χ] is the commutator.
The first term is

1

2π
χ(x)

∫
eixξdξ + (2π)−nχ(x)

∫
(−χ(ξ))eixξdξ.

The second term is ∑
|α|>1

C∂αX(2π)−n
∫
(1− ξ)/Pξβeixξdξ.

The first term is δ0(x), and the second is compactly supported. For the last
term, for x ̸= 0, 1/|x|2⟨x, ∂ξ⟩eix xi = eix·ξ. The idea is that we can integrate by
parts and the ∂ξ derivatives will decay rapidly. Then, we can replace this term
with something that decays rapidly so that we have δ0(x) +K(x) for a compactly
supported K ∈ C∞

c (Rn). This is called a ”Parametrix” for P (D).

In our above example, φ(x, θ) = x · θ and θ = ξ, with a(x, ξ) = 1−χ
P (ξ)

. Our function
satisfies the estimate

|∂αξ ((1− χ)/P )| ≤ Cα⟨ξ⟩−m−|α|.
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16.2 General Theory: Amplitudes

Definition 16.2. Smρ,δ(X × RN ) = {a ∈ C∞(X × RN ) : ∀K ⋐ X,α ∈ Nn, β ∈ NN ,∃C =

C(K,α, β) : |∂αX∂
β
ξ a| ≤ C⟨ξ⟩m−ρ|β|+δ|α|}.

In our previous example, when P is a homogeneous polynomial of degree q, 1−χ(ξ)
P (ξ)

∈
S−q
1,0 .

Remark 16.3. This only makes sense for 0 ≤ ρ ≤ 1 and 0 ≤ δ ≤ 1. For ρ > 1.
Then |∂αa| ≤ CN,α⟨ξ⟩−N . Suppose ξ has dimension [in] and a has dimension [in]k. ∂αξ a

has dimensions [in]k−|α|. On the other hand, |∂αξ a| ≤ C⟨ξ⟩m−ρ|α|, which has dimension

[in]m−ρ|α|. Then k − |α| = m− ρ|α| so k = m− (ρ− 1)|α|, but since α is arbitrary, the
units of a are any negative number.

The same analysis would work for δ < 0.

Smρ,δ is a Frechet space, one that is generated by seminorms. Namely, note that

∥a∥K,α,β = sup(x,θ)⟨θ⟩−m+ρ|β|+|α|δ|∂αx∂
β
ξ a|. Then a ∈ Smρ,δ if and only if for all K ⋐ X,

∥a∥K,α,β <∞. The space is a Frechet space if it is complete with respect to this norm.
This is also a meterizable space, with a metric defined in the obvious way.

Some properties:

� If m ≤ m′, δ ≤ δ′, ρ ≥ ρ′, then Smρ,δ ⊂ Sm
′

ρ′,δ′ .

� We define S−∞(X×RN ) = {a ∈ C∞(X×RN ) : K ⋐ X, ∀N,∃C|∂αx∂
β
ξ a| ≤ C⟨ξ⟩−N}.

� S−∞(X × RN) =
⋂
m S

m
ρ,δ(X × RN). We call this the residual space.

Example 16.4

Take a ∈ C∞(X × RN) and for |θ| ≥ 1, λ > 0, a(x, λθ) = λma(x, θ). We claim that
a ∈ Sm1,0. If we differentiate, we have ∂αθ a(x, λθ) = λm−|α|∂αθ a(x, θ).

42



Vishal Raman (May 10, 2023) Math 222b

17 March 16th, 2021

17.1 Amplitudes of Oscillatory Integrals

We are making sense of I(a, φ) =
∫
RN a(x, θ)e

iφ(x,θ) dθ on a distribution. We defined a
class of functions for m ∈ R, ρ, δ ∈ [0, 1]. Smρ,δ(X × RN) = {a ∈ C∞(X × RN) : ∀K ⋐

X,α ∈ Nn, β ∈ NN ,∃C = C(K,α, β) : |∂αX∂
β
ξ a| ≤ C⟨ξ⟩m−ρ|β|+δ|α|}. These are called the

symbols of order m and type (ρ, δ). We write Sm = Sm1,0, which is the case where

|⟨θ⟩−m+|β|∂αx∂
β
ξ a| ≤ Cαβ.

Why are these called symbols? Suppose we have P (x, 0)u =
∑

|α|≤m aα(x)D
α
ku. We

can also write this as (2π)−n
∫ ∑

|α|≤m aα(x)ξ
αei(x−y)ξu(y) dydξ, u ∈ §. The current

order of integration makes sense but we can also just consider the integral in dξ, which
is an oscillatory integral, whose integrand is p(x, ξ) is the symbol of P (x,D). Then
p ∈ Sm(X × Rn), which is of type (1, 0).

17.2 A Cool Example

Suppose f ∈ C∞(X × Rn; [0,∞)) homogeneous - f(x, λθ) = λf(x, θ), λ > 0, |θ| ≥ 1.
Define a(x, θ) = e−f(x,θ). Note that 0 ≤ a ≤ 1. This is also a smooth function.
We claim that

∂αx∂
β
θ (e

−f ) =
∑

|α̃|≤|α|,|β̃|≤|β|

aαβ(x, θ)(∂xf
)α̃(∂θf)

β̃e−f .

We can estimate the bad term (∂xf
)α̃(∂θf)

β̃e−f . For this, we use Landau’s inequality:
If g ∈ C2(U), g ≥ 0, for all K ⋐ U , there exists C such that |∇g(x)| ≤ C

√
g(x), x ∈ K.

Proof. Note that 0 ≤ g(x + y) = g(x) + ∇g(x) + y + O(|y|2). This implies that
−∇g(x) · y ≤ g(x) +O(|y|2). Taking y = −ϵ∇g(x), it follows that

ϵ|∇g(x)| ≤ g(x) +O(ϵ2|∇g(x)|2),

which implies the result.

We have that f ≥ 0 so we have that |∂xf | + |∂θf | ≤ Cf 1/2, with 1 ≤ θ ≤ 2, x ∈ K.
For λ > 0, note that

λ−1∂xf(x, λθ) + ∂θf(x, θ) ≤ Cλ−1/2f(x, λθ)1/2.

It follows by taking θ̃ = λθ,

|θ|−1/2∂xf(x, θ) + |θ|1/2∂θf(x, θ) ≤ C(f, θ)1/2, |θ| ≤ 1, x ∈ K.

Now, we estimate

|(∂xf)α̃(∂θf)β̃e−f | ≤ |θ||α̃|/2|θ|−|β̃|/2f 1/2(|α̃+β̃|)e−f .

Finally fke−f ≤ k!, which is some constant, so it follows that our term is bounded by
Cα̃β̃|θ||α̃|/2|θ|−β̃/2 ∈ S0

1/2,1/2(X × RN).
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17.3 Topology of the Symbol Space

Proposition 17.1

Suppose {aj} is bounded in Smρ,δ and aj(x, θ) → a(x, θ) for all x, θ ∈ X × RN . Then,

a ∈ Smρ,δ and aj → a in Sm
′

ρ,δ for all m
′ > m.

Proof. We first prove a lemma.

Lemma 17.2

Suppose f ∈ C2([−ϵ, ϵ]). Then |f ′(0)| ≤ 2∥f∥1/2L∞∥f ′′∥1/2L∞ + (2/ϵ+ 1/2)∥f∥L∞ , where
∥g∥L∞ = sup|x|≤ϵ |g|.

Proof. f(x) = f(0) + xf ′(0) + x2 +
∫ 1

0
(1− t)f ′′(tx) dt. We have the estimate

|xf ′(0)| ≤ 2∥f∥∞ +
x2

2
∥f ′′∥∞.

Dividing by x, we we have |f ′(0)| ≤ 2/x∥f∥∞ + x/2∥f ′′∥∞. Then, we take x =

min(2∥f∥1/2∞ /∥f ′′∥1/2∞ , ϵ) ≤ 2∥f∥1/2∞ ∥f ′′∥1/2∞ + (2
ϵ
+ 1

2
)∥f∥∞,

From the lemma,

∥a′j − a′k∥ ≤ C∥aj − ak∥1/2∞ ∥a′′j − a′′k∥1/2∞ + C∥aj − ak∥∞.

Hence, a Cauchy sequence in L∞ implies Cauchy for higher symbols.

Example 17.3

Take a = 1, aj(θ) = χ(θ/j). aj(θ) → a(θ) for all θ. Do we have convergence of
aj → a in S0? No! because ∥aj − a∥∞ = 1. This is similar to the statement C∞

0 is
dense in Lp for 1 ≤ p <∞.
Now, ∥⟨θ⟩−δ(aj − a)∥∞ → 0 as j → ∞.

Define

bj =
∂αx∂

β
θ (aj − a)

⟨θ⟩m′−ρ|β|+δ|α| =
1

⟨θ⟩m′−m
∂αx∂

β
θ (aj − a)

⟨θ⟩m−ρ|β|+δ|α| .

We know that ∂αx∂
β
θ (aj − a) goes to 0 on compact sets, and ⟨θ⟩m−m′ → 0 as |θ| → ∞.

Then, for all ϵ > 0, there exists Rϵ so that |kj| < ϵ if |θ| > Rϵ. On the other hand, for
|θ| ≤ Rϵ, x ∈ K, |kj| < ϵ if j > Jϵ. These two things imply that |kj| < ϵ for j > Jϵ.
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18.1 Topology of the Symbol Space, continued

Recall that we wish to define a distribution in terms of the oscillatory integral I(a, φ) =∫
RN u(x, θ) e

iφ(x,θ)dθ. We defined a class a ∈ Smρ,δ(X × RN) if for all K ⋐ X, α, β, there

exists C so that |∂αx∂
β
θ a(x, θ)| ≤ C⟨θ⟩m−ρ|α|+δ|β|. This class is equipped with seminorms

∥a∥K,α,β in the obvious way and they generate the topology.
Last time, we proved the following: if {aj} ⊂ Smρ,δ is bounded(∥aj∥K,α,β ≤ CK,α,β), for

all (x, θ) ∈ X × Rn, aj(x, θ) → a(x, θ). Then, a ∈ Smρ,δ and aj → a in Sm
′

ρ,δ for m
′ > m.

Proposition 18.1

For every m′ > m, S−∞(X × RN) is dense in Smρ,δ in the Sm
′

ρ,δ topology.

Proof. Write χj(θ) = χ(θ/j) where χ is a bump function which is 1 on open set. Note
that ∂αθ χj(θ) = j−|α|χ(α)(θ/j), which is supported in |θ| ∈ [j, 2j], so we haveO(⟨θ⟩−|α|).
Hence, χj ∈ S0

1,0 and moreover, aj := χja ∈ Smρ,δ uniformly: {aj} is a bounded sequence
in Smρ,δ. On the other hand, aj ∈ S−∞, so applying the result from last time implies the
desired since aj → a pointwise.

Remark 18.2. From Poincare, we say that a ∼
∑∞

j=0 ajh
j(where the RHS doesn’t

converge) if for all N , there exists C so that |a −
∑N−1

j=0 ajh
j | ≤ ChN . This is like a

Taylor’s Theorem.

Theorem 18.3

Suppose aj ∈ S
mj

ρ,δ , mj → −∞, m0 ≥ m1 ≥ . . . . Then, there exists a ∈ Smρ,δ such
that for every k

a−
k−1∑
j=0

aj ∈ Smk
ρ,δ (X × RN).

a is unique in the sense that if the equality holds for another ã, then a− ã ∈ S−∞.

We will write a ∼
∑∞

j=0 aj.

Proof. Suppose we have a sequence ∥ · ∥k,ℓ is a sequence of seminorms defining the
topology on Smk

ρ,δ (for k constant, ∥ · ∥k,ℓ is a sequence of seminorms).

For every j, there exists bj ∈ S−∞ so that ∥aj − bj∥ν,µ ≤ 2−j for 0, ν, µ ≤ j − 1. This
is okay because S−∞ is dense in S

mj

ρ,δ in the topology of Smnu for ν ≤ j − 1.
This implies that if we have

∑
j≥k aj − bj, this converges in Smk

ρ,δ for all k. Now,
we put a =

∑∞
j=0 aj − bj ∈ Sm0

ρ,δ . Note that a −
∑

j<k aj =
∑

j≥k ak −
∑∞

j=0 bk =
−
∑

j<k bk +
∑∞

k aj − bj. The first term is in S−∞ because it is a finite sum of things in
S−∞. The second term is in Sm0

ρ,δ .

18.2 Phase Functions

We denote ṘN to be RN \ {0}.
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Definition 18.4 (Non-degenerate Phase Function). A function φ ∈ C∞(X × ṘN)
satisfying

� φ(x, λθ) = λφ(x, θ), λ > 0.

� Im(φ) ≥ 0.

� dφ ≠ 0: dφ =
∑
∂θjφdθj +

∑
∂xjφdxj or the gradient vector is different from zero

for all x, θ.

Lemma 18.5

Suppose m + k < −N . Then, a 7→ I(a, φ) defines a continuous map between
Smρ,δ(X × RN) → Ck(X).

Proof. I(a, φ) ∈ C(X) if |a| ≤ ⟨θ⟩−N−ϵ i. e. a ∈ Smρ,δ andm < −N . When we differentiate

this k times, we get a function in Sm+k
ρ,δ which would map to C(X) if m+ k < −N .

Corollary 18.6

If a ∈ S−∞, this implies that I(a, φ) ∈ C∞(X).

Theorem 18.7

Suppose 0 < ρ ≤ 1 and 0 ≤ δ < 1. There exists a unique continuous map
from

⋃
m S

m
ρ,δ ∋ a 7→ I(a, φ) ∈ D′(X), such that for a ∈ Smρ,δ, m < −N , I(a, φ) =∫

a(x, θ)eiφ(x,θ) dθ. If k ∈ N and m−kmin(ρ, 1−δ) < −N , then the map a 7→ I(a, φ)
is continuous as a map from Smρ,δ → D′(k)(X).

Remark 18.8. Recall that u ∈ D′(k)(X) if for all K ⋐ X, there exists c so that for all
φ ∈ C∞

c (K), |u(φ)| ≤ C sup|α|≤k |∂αφ|.

Proof. Uniqueness: this follows from the fact that S−∞ is dense in Smρ,δ in S
m′

ρ,δ topology
for all m′ > m.
Existence: We sketch the proof and prove it next time.

� Use dφ ̸= 0 to find a differential operator L so that LT eiφ = eiφ.

� For a ∈ S−∞, from integration by parts, I(a, φ)v =
∫
Lk(a, v)eiφdθdx, which has

stronger regularity.

Example 18.9

Take u(x) =
∫
Rn⟨ξ⟩eix·ξ dξ. Then u(v) =

∫
Rn×Rn⟨ξ⟩v(x)eix cdotξ dxdξ where v ∈

C∞
c . Now, we construct L so that LT (eixξ) = eixξ. This corresponds to (⟨A, ∂x⟩ +

⟨B, ∂ξ⟩)eixξ = eixξ. Then, we want i⟨A, ξ⟩+ i⟨B, x⟩ = 1.
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19.1 Oscillatory Integrals as Distributions

We had formal expressions
∫
RN a(x, θ)e

iφ(x,θ) dθ.

� a ∈ SMρ,δ(X × RN) if and only if ∂αx∂
β
ξ a = O(⟨ξ⟩m−|β|ρ+δ|α|).

� For a nondegenerate phase function, we have the conditions, φ is homogeneous of
degree 1 in θ, Im(φ) ≥ 0, and dφ ̸= 0.

Lemma 19.1

If a ∈ Smρ,δ, m + k < −N , then a 7→ I(a, φ) =
∫
aeiφ is continuous as a map from

Smρ,δ 7→ Ck(X).

Theorem 19.2

Suppose 0 < ρ ≤ 1 and 0 ≤ δ < 1. There exists a unique continuous map from⋃
m S

m
ρ,δ ∋ a 7→ I(a, φ) ∈ D′(X), such that for a ∈ Smρ,δ, m < −N , it coincides with

I(a, φ) =
∫
a(x, θ)eiφ(x,θ) dθ. If k ∈ N and m− kmin(ρ, 1− δ) < −N , then the map

a 7→ I(a, φ) is continuous as a map from Smρ,δ → D′(k)(X).

Proof. We showed uniqueness last time. Namely, for all a ∈ Smρ,δ there exists aj ∈ S−∞
ρ,δ

such that aj → a in Sm
′

ρ,δ for m
′ > m so I(aj, φ) are uniquely determined by

∫
aje

iφ ∈
C∞(X), so continuity implies the uniqueness.
For existence, we use the following lemma.

Lemma 19.3

Suppose that φ is a non-degenerate phase function. Then, there exists aj ∈ S0
1,0,

bℓ ∈ S−1
1,0 , c ∈ S−1

1,0 such that if we define L =
∑

j aj(x, θ)∂θj +
∑

ℓ bℓ(x, θ)∂xℓ + c(x, θ)

so that tL(eiφ) = eiφ.

Example 19.4
tL denotes the transpose of the operator when considered as a distribution. Namely,
Lv(u) = v(tLu). For example, t∂xj = −∂xj . It is also easier to understand when
taking it for test functions through integration.

Proof. Take χ ∈ C∞
c (RN ) so that χ ≡ 1 near 0. Define Φ =

∑
| ∂φ
∂xj

|2 + |θ|2
∑

| ∂φ
∂θj

|2. We

have that Φ is a smooth function away from 0. It is homogeneous of degree 2 in θ, which
can be understood by considering each component. This expression is nonzero away from
0. We can define the transpose

tL =
1− χ(θ)

iΦ

∑
|θ|2 ∂φ

∂θj
∂θj +

∑ ∂φ

∂xj
∂xj + χ(θ).

We claim that tL(eiφ) = eiφ. Note that φ 7→ iΦ. The first term is in S0, the second is
in S−1 and χ ∈ S−∞ ⊂ S−1.

47



Vishal Raman (May 10, 2023) Math 222b

We start with u ∈ C∞
c (X). First, take a ∈ S−∞. Then, I(a, φ) ∈ C∞(X), so we have

⟨I(a, φ), u⟩ =
∫
X

∫
RN

a(x, θ)u(x)eiφ(x,θ) dθdx

=

∫
X

∫
RN

au(tL)k(eiφ) dθdx

=

∫
X

∫
RN

Lk(au)eiφ dθ dx

Now, suppose that a ∈ Smρ,δ for ρ > 0 and δ < 1. Then, Lk(au) ∈ S
m−kmin(ρ,1−δ)
ρ,δ ,

which means that for ρ < 1, δ > 1, we gain decay. This gives a continuous map
(a, u) 7→ Smρ,δ × C∞

c (X).

Then, supK×RN |Lk(au)⟨θ⟩−m+kmin(ρ,1−δ)| ≤ C∥a∥ℓ,K
∑

|α|≤k sup |∂αu|. This implies

that if a ∈ Smρ,δ and k is such that m− kmin(ρ, 1− δ) < −N , we can define

⟨Ik(a, φ), u⟩ =
∫
eiφLk(au) dθdx ≤ Ca,k,K

∑
|α|≤k

sup |∂αu|.

To define I(a, φ) for a ∈ Sm we need to show that if m− k′min(ρ, 1− δ) < −N , then
Ik(a, φ) = Ik′(a, φ). We can prove this similarly to the uniqueness argument, since we
have a sequence aj → a in Sm

′
for m′ > m and Ik(aj, φ) = Ik′(aj, φ) = I(a, φ).

19.2 Some Remarks

� I(a, φ) = limϵ→0

∫
eiφ(x,θ)a(x, θ)χ(ϵθ) dθ. This follows from the density of aϵ → a

in S−∞.

� Suppose V =
∑
aj∂θj +

∑
bℓ∂xℓ + c, aj ∈ S0, bℓ, c ∈ S−1. Then,

∫∫
tV (eiφ)au =∫∫

eiφV (au), with the understanding that these are oscillatory integrals.

� We can use the above remark to prove things like smoothness of oscillatory integrals
away from points. For example, take (2π)−n

∫
eixθ dθ = δ0(x). We can take

V = (1−χ(x))x∂θ
|x|2 ∈ S0 and it follows that

∫
eixθ dθ ≡ 0 away from 0.
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20.1 Oscillatory Integrals, continued

Recall that
⋃
m S

m
ρ,δ ∋ a 7→ I(a, φ) ∈ D′(X). We showed that for a ∈ S−∞, we had

I(a, φ) =
∫
a(x, θ)eiφ(x,θ) dθ ∈ C∞(X), with the assumption that φ is a non-degenerate

phase function.
We mentioned last time that if we have

∫∫
tL(eiφ)au dθdx =

∫∫
eiφL(au) dθdx for any

u ∈ C∞
c (X) where L =

∑
aj∂θj +

∑
bk∂xk + c, aj ∈ S0, bk ∈ S−1, c ∈ S−1.

Definition 20.1. Given a phase function φ, define Cφ = {(x, θ) : dθφ = 0}.

If we take δ0(x), φ = x cdotθ, then Cφ = {(0, θ) : θ ∈ Rn}.

Lemma 20.2

Suppose a ∈ Smρ,δ, 0 < ρ, δ < 1, a ≡ 0 in a conic neighborhood Cφ. Then
I(a, φ) ∈ C∞(X).

Definition 20.3. A conic neighborhood of θ0 ∈ ṘN is a set θ satisfying | θ|θ| −
θ0
|θ0| | < ϵ

for some ϵ.

Proof. Claim: there exists L =
∑
aj∂θj+c, aj ∈ S0, c ∈ S−1 such that tL(eiφ) = (1−b)eiφ,

b ∈ S0 with supp b ∩ supp a = ∅.
Namely, choose b, which is homogeneous of degree 0, |θ| > 1 in a conic neighborhood

of Cφ and b = 0 on the support of a. We can simply take b(x, θ), θ ∈ SN−1 so that b = 1
near Cφ ∩ SN−1. If supp b is close enough to Cφ, this implies the disjoint supports by
the assumption that a ≡ 0 on the conic neighborhood of Cφ.
Then, we construct tL = (1 − b) 1

|φθ|2 ⟨φθ, ∂θ⟩. This is fine because b ≡ 1 on the set

where φθ vanishes. We also know that (1− b)∂αa = ∂αa and ∂αb∂βa = 0. This implies
that I(a, φ) = I(Lka, φ) for all k where we have L(au) = (La)u. Furthermore, note that
Lka ∈ Sm−kmin(ρ,1−δ), so we can make this arbitrarily small for large k, which implies
that I(a, φ) ∈ Cm(X) for all m.

Theorem 20.4

sing supp I(a, φ) ⊂ π(Cφ) where π : X × ṘN → X, π(x, θ) = x.

Remark 20.5. Recall that for u ∈ D′(X), sing supp u = {x : ∃U = nbhd(x), a|U ∈
C∞(U)}c.

Proof. Suppose x0 ̸∈ π(Cφ). Then, there exists ψ(x) such that ψ(x0) = 1, supp ψ ∩
π(Cφ) = ∅(this exists because Cφ is closed, so its projection is closed). Then ψI(a, φ) =
I(ψa, φ). Now, supp ψa ∩ Cφ = ∅. Now, we apply the lemma.

Some examples

� For f ∈ C∞(X), Im(f) ≥ 0 and f(x) = 0 implies that df(x) ̸= 0(this implies
that {x; f(x) = 0} is a C∞ hypersurface). Define u(x) =

∫∞
0
eif(x)τ dτ . Strictly

49



Vishal Raman (May 10, 2023) Math 222b

speaking, this should be
∫∞
0
χ(τ)eif(x)τ dτ +

∫
R(1 − χ(τ))eif(x)τ dτ , which is now

I(1− χ, f(x)τ) ∈ S0.

Note that
∫∞
0
ei(f(x)+iϵ)τ dτ = i

f(x)+iϵ
converges to u(x) ∈ D′(X). It follows that

u(x) = i(f(x))−1 and Cφ = {(x, τ) : f(x) = 0}.

� We wish to solve (∂2t − ∆)u = 0, u|t=0 = f , ∂tu|t=0 = 0, f ∈ S ′(Rn). Then,
u(t, x) = (2π)−n1/2

∫∫ ∑
± e

i(x−y)ξ±|ξ|tf(y) dydξ. We can check this is a solution to
the wave equation.

Define U(t, x, y) = (2π)−n
∫

1
2

∑
± e

i(x−y)ξ±i|ξ|t dξ ∈ D(R× Rn), since we can check
directly that φ±(t, x, y, ξ) is a phase function. Note that Cφ± = {|x − y| = t},
which gives the light cone.

20.2 Fourier Integral Operators and Pseudodifferential Operators

Suppose that φ ∈ C∞(X×Y ×RN ), X ⊂ Rn Y ⊂ Rm is a phase function in all variables.
Namely, X × Y is the ”old X” and a ∈ Smρ,δ(X × Y × RN), ρ > 0, δ < 1. We obtain

K(x, y) =
∫
a(x, y, θ)eiφ(x,y,θ) dθ ∈ D′(X × Y ). K defines A : C∞

c (Y ) → D′(X) via
u ∈ C∞

c (Y ), c ∈ C∞
c (X), and ⟨Au, v⟩ := ⟨K, v ⊗ u⟩, where v ⊗ u(x, y) = v(x)u(y) ∈

C∞
c (X × Y ).
Formally, we write Au(x) =

∫∫
a(x, y, θ)eiφ(x,y,θ)u(y) dydθ which is understood as an

oscillatory integral when paired with v. This is called the Fourier Integral Operator.
For θ ∈ Rn, X = Y ⊂ Rn, φ(x, y, θ) = (x − y) · θ, we have a Pseudodifferential

Operator.
Suppose we have a differential operator P (x,D) =

∑
|α|≤m aα(x)D

α
x , a− α ∈ C∞(X).

We can write

Pu(x) = (2π)−n
∫∫ ∑

aα(x)ξ
αu(y) dydξ.

Then, a(x, ξ) =
∑
aαξ

α ∈ Sm1,0(X × Rn).

Theorem 20.6

Suppose A is an FIO, we have the following:

� If for every x ∈ X, (y, θ) 7→ φ(x, y, θ) is a phase function, then A : C∞
c (Y ) →

C∞(X).

� If for every y ∈ Y , (x, θ) 7→ φ(x, y, θ) is a phase function, then a : E ′(Y ) →
D′(X).
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21.1 Operators on Oscillatory Integrals

Take X ⊂ Rn, Y ⊂ Rm, a ∈ Smρ,δ(X × Y × RN), φ = φ(x, y, θ) a non-degenerate phase
function. Assuming ρ > 0, δ < 1, this gives a distribution K = I(a, φ) ∈ D′(X × Y ).
Furthermore, this defines an continuous operator A : C∞

c (Y ) → D′(X) given for u ∈
C∞
c (Y ), v ∈ C∞

c (X) by
⟨Au, v⟩ = ⟨K, u⊗ v⟩

where u⊗ v = u(x)v(y) ∈ C∞
c (X × Y ). These are called Fourier Integral Operators.

� K±(t, x, y) = (2π)−n
∫
ei⟨ξ,x−y⟩e±i|ξ|t for t ∈ R, x, y ∈ Rn.

� For X = Y , φ(x, y, ξ) = ⟨x− y, ξ⟩, this gives the Pseudo-differential Operators.

Remark 21.1. The map a 7→ I(a, φ) ∈ D′(X × Y ) is continuous, so that for u, v ∈
C∞
c (W ),W ⋐ X × Y ,

|⟨K,u⊗ v⟩| ≤ C
∑

|α|≤N,|β|≤N

sup |∂αx ∂βy (uv)|.

Theorem 21.2

Suppose A is an FIO, we have the following:

� If for every x ∈ X, (y, θ) 7→ φ(x, y, θ) is a non-degenerate phase function(dy,θφ ≠
0), then A : C∞

c (Y ) → C∞(X).

� If for every y ∈ Y , (x, θ) 7→ φ(x, y, θ) is a non-degenerate phase function(dx,θ ≠
0), then a : E ′(Y ) → D′(X).

Example 21.3

For a pseudo-differential operator, we have φ = ⟨x− y, ξ⟩ and (y, ξ) 7→ ⟨x− y, ξ⟩ and
(x, ξ) 7→ ⟨x− y, ξ⟩ are non-degenerate.

Proof. Take Φ = |dyφ|2+|θ|2|dθφ|2, which is nonzero forX×Y ×ṘN . This is homogeneous
of degree 2. Let χ be the usual bump function and set

tL =
1− χ

iΦ
(⟨∂yφ, ∂y⟩+ |θ|2⟨∂θφ, ∂θ⟩) + χ.

Then, L = ⟨A, ∂y⟩ + ⟨B, ∂θ⟩ + c for A ∈ S−1, B ∈ S0, c ∈ S−∞ ⊂ S−1. We showed
that for operators of this form, we can integrate by parts. Namely,

⟨Au, v⟩ =
∫
eiφv(x)Lk(au) dxdydθ.

Then, Lk ∈ Sm−kmin(ρ,1−δ). It follows that Au =
∫
eiφLk(au) dydθ ∈ C∞(X).

For the second part, note that for any A : C∞
c (Y ) → D′(X), we define tA : C∞

c (X) →
D′(Y ) by ⟨tAv, u⟩ = ⟨Au, v⟩. If A is defined using KA ∈ D′(X × Y ), this implies that tA
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is defined by KtA(y, x) = KA(x, y). This means that if KA = I(a, φ), then Kta = I(ã, φ̃)
where ã(y, x, θ) = a(x, y, θ) and φ̃(y, x, θ) = φ(x, y, θ). But now, the condition that
(x, θ) 7→ φ(x, y, θ) is non-degenerate implies that KtA : C∞

c (X) → C∞(Y ). It follows that
A : E ′(Y ) → D′(X). For u ∈ E ′(Y ), v ∈ C∞

c (X), we define ⟨Au, v⟩ = ⟨tAv, u⟩.

21.2 Method of Stationary Phase

We defined Cφ = {(x, θ) : φθ = 0}. We proved that sing supp I(a, φ) ⊂ π(Cφ) where
π(x, θ) = x. One could ask, when do we have equality? To do this, we need to ”evaluate”
our oscillatory integrals. This is the Method of Stationary Phase.
Define

I(λ) =

∫
eiλφ(x)a(x) dx,

for a ∈ C∞
c (R), φ ∈ C∞(R,R). We could also take

J(λ) =

∫
e−λψ(x)a(x) dx.

The study of the first is the stationary phase method and the study of the second is the
steepest descent method.

21.3 Steepest Descent

Recall from lecture 1, we were stuck on the integral
∫ 2π

0
e−

1
2ϵ

|ξ|2 cos2 θ dθ as ϵ → 0. The
Method of Steepest Descent will give us the asymptotic expansion of this.
For a ∈ C∞

c , ψ has a unique non-degenerate minimum.∫
e−λψ(x)a(x) dx = e−λψ(x0)((2πλψ′′(x0))

−1/2a(x0) + b1λ
−1/2−1 + b2λ

−1/2−2 + . . . ). This
means that for all N , there exists C such that

|
∫
e−λψ(x)a(x) dx−e−λψ0(x0)(2πλψ′′(x0))

−1/2a(x0)+b1λ
−1/2−1+b2λ

−1/2−2+. . . )| ≤ Ce−λψ(x0)λ−N−5/2.

If we take χ ∈ C∞
c (R), χ with support close to x0,

|
∫
e−λψ(x)(1− χ(x))a(x) dx| ≤ e−λ(ψ(x0)+ϵ).

By Taylor’s Formula, ψ(x) = 1/2(x− x0)
2ψ1(x), where ψ(x0) = ψ′′(x0). Then, take

y = y(x) = (x− x0)(ψ1(x))
1/2 for x near x0. Since y

′(x0) ̸= 0, we can write x = x(y), for
y near 0. Finally, φ(x(y)) = y2/2, so we have∫

e−λψ(x)χ(x)a(x) dx =

∫
e−1/2λy2b(y) dy

where b(y) = χ(x(y))a(x(y))|dx/dy|. We know that b(0) = a(x0)/(ψ
′′(x0))

1/2. We are
reduced to studying ∫

e−1/2λy2b(y) dy.

Then,
∫
uv = (2π)−1

∫
ûv̂, Plancherel’s formula. Then ,u = b(y), v = e−1/2λy2 . The

Fourier transform of e−1/2λ·2 =
√
2π

λ1/2
e−ξ

2/2λ, so it follows that∫
e−1/2λy2b(y) dy = (2πλ)−1/2

∫
e−ξ

2/2λb̂(ξ) dξ.
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We wish to consider this as λ→ ∞. By expanding the Taylor series of the exponential
term, we have

(2πλ)−1/2
∑∫

1

k!
(−1/2λξ2)kβ̂(ξ)dξ = (2πλ)−1

∑ (−1/2λ)k

k!

∫
ξ2kb̂(ξ)dξ.

Recall that
∫
ξ2kb̂(ξ) = (2π)D2k

x b(0).
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22 April 8th, 2021

22.1 Steepest Descent

Recall for Steepest Descent, we had

J(λ) =

∫
χ(x)e−λψ(x)a(x) dx+O(e−λ(ψ(x0)+a))

for χ ∈ C∞
c a smooth bump function near x0. We then wrote ψ(x) = ψ(x0) + 1/2y(x)2,

which gives a nice function x 7→ y(x) with y(x0) = 0 and y′(x0) ̸= 0.
Applying this, we had J(λ) = e−λψ(x0)

∫
b(y)e−λy

2/2 dy, b ∈ C∞
c near 0 and b(x0) =

a(x0)

(ψ(x0))1/2
.

Then, via Plancherel, we obtained

J(λ) = (2π)−1/2

∫
b̂(ξ)e−ξ

2/2λdy/
√
λ.

which has a finite expansion

(2π)−1/2

∫
b̂(ξ)

N−1∑
k=0

1/k!(−1/2λ)kξ2k dξ/
√
λ+ C

∫
b̂(ξ)ξ2Ne−1/2(θξ)2dξ/

√
λ.

Then, note that
∫
ξ2kb̂(ξ) = 2πD2k

y b(0), so we obtain

(2π)1/2/
√
λ
N−1∑
0

1/k!(2π)−k∂2ky b(0) + CNλ
−N−1/2∥(̂D2nb)∥1.

Then, we estimate

∥∂̂2Nb∥1 ≤ c(∥∂2n+2b∥L1 + ∥∂2Nb∥L1) ≤ C sup
|α|≤2N+2

|∂αb|.

J(λ) = e−λψ(x0)(2π)1/2
N−1∑
k=0

1/k!(2π)−k∂2ky b(0) +O(λ−N−1/2).

Putting this together, If ψ has a unique non-degenerate minimum at x0, ψ
′(x0) = 0,

ψ′′(x0) > 0, a ∈ C∞
0 (R), we gave∫

a(x)e−λψ(x) dx = e−λψ(x0)(2π/ψ′′(x0))
1/21/

√
λ(a(x0)+λ

−1a1+· · ·+λ−N−1aN−1+O(λ
−N−1/2)).

22.2 Stirling’s Formula

Recall the Gamma function

Γ(s) =

∫ ∞

0

e−ttsdt/t.

We wish to examine this as s→ ∞.
We rewrite this as

e−ttsdt/t = e−t+s log tdt/t = es log xe−s(x log x)dx/x.

Then, Γ(s) = ss
∫∞
0
e−s(x−log x) dx

x
. The phase ψ(x) = x− log x. Note that it achieves a

minimum at x = 1 and ψ′′(x) > 0.
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Take χ to be a bump function at 1. Then,∫ 1

0

(1− χ(x))e−s(x−log x)dx/x−O(e−(s(1+a))),

where the a is the point on the phase where χ removes the support. Similarly,∫ ∞

1

(1− χ(x))e−s(x−log x)dx/x = O(e−s(1+b)).

We see that

Γ(s) = ss[

∫
χ(x)e−s(x−log x) dx/x+O(e−smin(1+a,1+b))].

The first term is exactly suitable for the steepest descent method.
Namely, ψ = x− log x, a(x) = 1/x. ψ′(1) = 0, ψ′′(1) = 1, a(1) = 1, so we obtain the

estimate
Γ(s) = sse−s[

√
2πs−1/2 + a1s

−3/2 + · · ·+O(s−N−1/2)].

The leading term is exactly Stirling:

Γ(s) =
√
2πss−1/2e−s(1 +O(1/s)).
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23 April 13th, 2021

23.1 Stationary Phase

Take I(λ) =
∫
eiλφ(x)a(x) dx, φ ∈ C∞(R;R), a ∈ C∞

c (R).

Lemma 23.1

Suppose |ψ′(x)| > 0 on supp (a). Then for all K ⋐ X,N , for all a ∈ C∞
c (K), there

exists C such that
|I(λ)| ≤ C sup

|α|≤N
|∂αa|λ−N .

Proof. Define tL = 1
i|φ′|2ψ

′ · ∂x. Note that 1/λtL(e−λφ) = e−λφ. It follows that

I(λ) = λ−N
∫
eiλφ(LNa)(x) dx ≤ |supp a|λ−N sup |LNa| ≤ CNλ

−N sup
|α|≤N

|∂αa|.

Remark 23.2. The converse is open for higher dimensions.

This means that the contributions to the integral come from stationary points.

Theorem 23.3 (Stationary Phase(dim 1))

Suppose X = (α, β), a ∈ C∞
c (X) and φ has a unique critical point in (α, β),

φ′(x0) = 0, φ′′(x0) ̸= 0. Then

I(λ) =

√
2π

|φ′′(x0)|1/2
ei

π
4
sgnφ′′(x0)λ−1/2(a0+λ

−1a1+λ
−2a2+ · · ·+λ−(N−1)aN−1)+SN(λ),

where a0 = a(x0) and |SN(λ)| ≤ λ−1/2−N supk≤2N+2 |∂kxa|.

Proof. First, note that I(λ) =
∫
χ(x)a(x)eiλφ(x) dx+O(λ−∞), where χ is a smooth bump

function near x0. We make a change of variables φ(x) = φ(x0) + ϵ1
2
(y(x))2, where

y(x0) = 0, y′(x0) = |φ′′(x0)|1/2 ̸= 0, ϵ = sgn(φ′′(x0)). Assume φ(x0) = 0.
Hence, I(λ) =

∫
b(y)eiλϵy

2/2 dy+O(λ−∞), where b(y) = a(x(y))χ(x(y))|dx/dy|. Leaving
out the O(λ−∞), we have I(λ) = ⟨eiλϵy2/2, b⟩ = 1

2π
⟨êi/2ϵλy2 , b̂⟩.

Now, we calculate the Fourier transform of eiϵλy
2/2. We can write this as

lim
δ→0+

∫
eiϵ/2λy

2

e−1/2δy2e−iyξ dy = lim
δ→0+

∫
e−1/2(δ−iϵλ)(y+iξ/(δ−iϵλ))2+ξ2/(2(δ+iϵλ)) dy

=

√
2π√

δ − iϵλ
e−ξ

2/(2(δ−ϵiλ))

→
√
2π√
λ
eiπ/4ϵ.

We obtain the Fourier Transform
√

2π/λeiϵπ/4e−i/2ϵξ
2/λ.
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Remark 23.4. There are probably sign errors above.

I(λ) = 1
2π

√
2π√
λ
eiϵπ/4

∫
R e

−iϵξ2/2λb̂(ξ) dξ.
Expanding the Taylor series of the exponential term, we have

1

2π

√
2π√
λ
eiϵπ/4

∫
R

∑
k<N

1

k!
(−iϵ/2λ)kξ2kb̂(ξ) dξ + λN−1/2

∫
O(ϵ2N)|b̂(ξ)| dξ.

Then, note that 1/2π
∫
ξ2kb̂(ξ) dξ = (D2k

y b)(0), so we obtain√
2π

λ
eiϵπ/4

∑
k<N

λ−k(−iϵ/2)kD2k
y b(0) + λ−N−1/2∥ξ2N b̂∥L1 ,

and note that the last term is bounded by C supk≤2N+2 |∂kb|(a Sobolev type estimate).
This exactly gives our desired expansion.

23.2 Stationary Phase in Higher Dimensions

To proceed, we need an analog of φ′(x0) = 0, φ′′(x0) ̸= 0 ⇒ φ(x) = φ(x0) + ϵ/2(y(x))2.
For this, we use the Morse Lemma.

Theorem 23.5 (Morse Lemma)

Suppose φ ∈ C∞(Rn;R) and Dφ(x0) = 0 and D2φ(x0) is non-degenerate. Then,
there exists a transformation χ from a neighborhood of x0 to a neighborhood of x
such that φ ◦χ−1(y) = φ(x0)+ 1/2(y21 + · · ·+ y2r − y2r+1− · · ·− y2n) where (r, n− r) is
the signature of D2φ(x0);i i. e. r is the number of positive eigenvalues of D2φ(x0).

Proof. Without loss of generality, assume that x0 = 0, φ(x0) = 0. Then, we can
diagonalizeD2φ(0) = tUΛU where we order the eigenvalues λ1, . . . , λr > 0, λr+1, . . . , λn <
0. Then, we can write φ(x) = 1/2⟨φ′′(0)x, x⟩ + O(|x|3) = 1/2⟨ΛUx, Ux⟩ + O(|Ux|3),
where x̃ = |Λ|1/2Ux. But this is just 1/2(x̃21 + · · ·+ x̃2r − x̃2r+1 − · · · − x̃2n) +O(|x̃|3).
We write x̃ as x. We can write φ(x) =

∫ 1

0
(1−t)∂2t (φ(tx)) dt(this follows from integration

by parts). We can write this as 1/2
∑
qjk(x)xjxk where qjk(x) = 2

∫ 1

0
(1− t) ∂2φ

∂xi∂xj
(tx) dt,

qjk = qkj.

Then, qjk(0) = ∂2φ
∂xjxk

(0) so defining a matrix Q(x) = (qjk(x)), we have φ(x) =

1/2⟨Q(x)x, x⟩, Q(0) = D2(x0).
We would like to find k(x) = A(x)x where A(0) = I, x 7→ A(x) ∈ C∞. Then,

⟨x,Q(x)x⟩ = ⟨A(x)x,Q(0)A(x)x⟩ = ⟨K(x), Q(0)K(x)⟩ = ⟨y,Q(0)y⟩ where y = K(x).
This is the same as ⟨x,Q(x)x⟩ = ⟨x, tA(x)Q(0)A(x)x⟩. So, we needQ(x) = AT (x)Q(0)A(x)

with A(0) = I. To handle this, we use the implicit function theorem.

Theorem 23.6 (Implicit Function Theorem)

Given a function F : RM → RN and F (X0) = Y0 ∈ RN , X0 ∈ RM . We solve
F (X(Y )) = Y , X(Y0) = Y0, we need dF (X0) : RM → Rn to be surjective(or F is a
smooth submersion).

We will use F :M(R, n×n) → Sym(R, n) where F (A) = ATQ(0)A. Then, F (A+H) =
F (A)+ dFA(H)+ o(∥H∥). We have ATQ(0)A+HTQ(0)A+ATQ(0)H +HTQ(0)H.
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24 April 18th, 2021

24.1 Morse Lemma

Recall the Morse Lemma:

Theorem 24.1 (Morse Lemma)

Suppose φ ∈ C∞(Rn;R) and Dφ(x0) = 0 and D2φ(x0) is non-degenerate. Then,
there exists a transformation χ from a neighborhood of x0 to a neighborhood of x
such that φ ◦χ−1(y) = φ(x0)+ 1/2(y21 + · · ·+ y2r − y2r+1− · · ·− y2n) where (r, n− r) is
the signature of D2φ(x0);i i. e. r is the number of positive eigenvalues of D2φ(x0).

Proof. Last time, we reduced the problem to finding x 7→ A(x), where A(x) ∈ Rn×n

and A(0) = In. Then, if we take Q(x) = AT (x)Q(0)A(x), it follows that x 7→
Q(x) ∈ Symm(n), the group of symmetric real-valued matrices, where Q(0) = Q is
non-degenerate.
To do this, define F : Rn×n → Symm(n) with F (A) = ATQA. We wish to find a right

inverse H such that G(Q) = I and F ◦G = In. Then, A(x) = G(Q(x)) would satisfy our
conditions.
Note that F (A+H) = F (A) + dFA(H) + o(∥H∥2). Namely,

(A+H)TQ(A+H) = ATQA+ ATQH +HTQA+HTQH.

The first term is F (A), the next two give dFA(H) and the last is o(∥H∥2). Now,
dFA : Rn×n → Symm(n) is given by H 7→ QH +HTQ = S, note that we can find a right
inverse Q−1S/2. It follows that we can apply the implicit function theorem.

24.2 Higher Dimensional Method of Stationary Phase

As before, take I(λ) =
∫
eiλφ(x)a(x) dx for a ∈ C∞

c (X), where we assume φ has a
non-degenerate critical point. We can write this as

=

∫
eiλφ(x)χ(x)a(x) dx+O(λ−∞) supp χ ∈ Bϵ(x0)

=

∫
e−iλ/2⟨Qx,x⟩b(x) dx+O(λ−∞), b(x) = a(K−1(x))

∣∣∣∣dK−1

dx

∣∣∣∣
by applying the Morse Lemma. If we take the Fourier Transform of the Gaussian and
apply the Blancherel Formula, we obtain

=
λ−n/2(2π)n/2

(2π)n| detQ|1/2
eiπ/4 sgnQ

∫ ∑
k<N

1/k!(⟨Q−1ξ, ξ⟩/(2λi))kb̂(ξ) + λ−n/2−N
∫
O(⟨ξ⟩2N)|̂b(ξ)| dξ

=
λ−n/2(2π)n/2

(2π)n| detQ|1/2
eiπ/4 sgnQ

∑
k<N

1

k!

[(
⟨Q−1Dx, Dx⟩

2λi

)k
b

]
(0) + λ−N−n/2Sn(λ),

where
|SN(λ)| ≤ C∥⟨ξ⟩2nb̂∥q ≤ C

∑
|α|≤2N+n+1

∥∂αb∥∞.
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Example 24.2

Take (x, y) ∈ Rn×Rn, Q =

(
0 −I
−I 0

)
. Note thatQ−1 = Q. Then, 1/2⟨Q(x, y), (x, y)⟩ =

−x · y = w2 − v2 where w = x+y√
2
, v = x−y√

2
. The corresponds to a matrix

(
I 0
0 −I

)
,

which has a signature of 0. This is the nicest case for the stationary phase method.
Then, 1

2i
⟨Q−1Dx·y, Dx·y⟩ = 1

i

∑n
i=1DxjDyj which gives (λ/2π)n

∫
e−λx·yu(x, y) dxdy

for u ∈ C∞
c (Rn × Rn). From the method of stationary phase, we have

N−1∑
0

1

k!

1

λk
(
∑

1/iDxjDyj)
ku(0, 0) + Snλ

−N ,

∥SN∥ ≤ C
∑

|α+β|≤2n+1

∥∂αx∂βy (∂x · ∂y)∥∞

24.3 General Schrodinger Operators

We find a fundamental solution to

(i∂t +
1

2
⟨Q−1Dx, Dx⟩)E = δ0(t)δ0(x).

For Q = −2I, we have the free Schrodinger Equation.
We require Q to be a symmetric, non-degenerate matrix. If we take a spacial fourier

transform, we obtain

δ0(t) = (i∂t + ⟨Q−1ξ, ξ⟩/2)Êx = i∂t(e
−it/2⟨Q−1ξ,ξ⟩Ê),

a first-order ODE. Solving this, we obtain

Êx(t, ξ) = eit/2⟨Q
−1ξ,ξ⟩H(t)/i,

where H is the heaviside function. Finally, if we take an inverse spacial fourier transform
we obtain

E =
| detQ|1/2

i(2tπ)n/2
eiπ/4 sgnQe⟨Qx,x⟩/(2it).
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25 April 20th, 2021

25.1 Pseudodifferential Operators

Definition 25.1. An operator A is a pseudodifferential operator of order ≤ m, A ∈
Ψm
ρ,δ(X)(ρ > 0, δ < 1), if there exists a ∈ Smρ,δ(X ×X × Rn) such that for u ∈ C∞

c (X),

Au(x) = (2π)−n
∫∫

ei(x−y)ξa(x, y, ξ)u(y) dydξ

as an oscillatory integral.

� If we take A =
∑

|α|≤m aαD
α
x , then a(x, y, ξ) =

∑
|α|≤m aα(x)ξ

α is the corresponding
symbol.

� (I −∆) : S(Rn) → S(Rn) has an inverse (I −∆)−1 : S(Rn) → S(Rn) ∈ Ψ−2
1,0, by

taking a(x, y, ξ) = (1 + |ξ|2)−1.

� P (Eu) = u, u ∈ E ′(Rn+1), with P = ∂t −∆+ 1. Then, E ∈ Ψ−1
1/2,0(R

n+1) with the

(dreaded) HW symbol a = (iτ + |ξ|2 + 1)−1.

� (i∂t +∆)(Eu) = u, u ∈ E ′(Rn+1). We showed that a = eit|ξ|
2
H(t), which is not in

any symbol class.

Recall from before,

Au(y) =

∫
Ka(x, y)u(y) dy, Ka ∈ D′(X ×X), u ∈ C∞

c (X).

Then, Au ∈ D′(X), ⟨Au, v⟩ = ⟨Ka, u⊗ v⟩, v ∈ C∞
c (X). If KA = I(a, φ), then (x, θ) 7→

φ(x, y, θ) takes C∞
c (X) → C∞(X) and (y, θ) 7→ φ(x, y, θ) takes E ′(X) → D′(X).

Recall the singular support of KA is contained in the set {(x, y) : ∃δ, φδ(x, y, δ) = 0}.
Note that if A ∈ Ψm

ρ,δ, then A : C∞
c (X) → C∞(X) and A : E ′(X) → D′(X). In this case,

the singular support is contained in ∆(X ×X) = {(x, x) : x ∈ X}.

Proposition 25.2 (Semilocality)

If A : E ′(X) → D′(X), then sing supp KA ⊂ sing supp u.

Proof. Take x0 ∈ X \ sing supp u. Choose φ ∈ C∞
c (X) with φ ≡ 1 near x0, ψ ≡ 1 near

sing supp u and supp φ ∩ supp ψ = ∅. Then, Au = A(1− ψ)u+ Aψu = Aψu+ g with
g ∈ C∞(X). It follows that φAu = φAψu + φg, φg ∈ C∞

c (X). Since φ is 1 near x0,
it suffices to show that φAu ∈ C∞, since it would follows x0 cannot be in the singular
support of Au.
Define KφAψ(x, y) = φ(x)KA(x, y)ψ(y). Since supp KφAψ ∩∆(X ×X) = ∅, we have

KφAψ ∈ C∞
c , which implies that φAψu ∈ C∞, which implies that φAu ∈ C∞.

Definition 25.3. A is a smoothing operator if A takes E ′(X) → C∞(Y ) and C∞
c (Y ) →

D′(X), or equivalently KA ∈ C∞(X × Y ). We define Ψ−∞ to be the class of smooth
operators.
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Proposition 25.4

A ∈ Ψ−∞(X) if and only if a ∈ S−∞(X ×X × Rn) satisfying the pseudodifferential
operator definition.

Proof. For the forward direction, KA(x, y) = C
∫
ei(x−y)ξa(x, y, ξ) dξ ∈ C∞(X ×X).
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