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1 January 19th, 2021

1.1 Review of Sobolev Spaces

Definition 1.1. Given u € D'(U) for U C R" open: that means that u : C*(U) — C
and for every compact set K CC U, 3C, N for all ¢ € C3°(K) such that

(@)l < C sup |0%].
lo|<N
Examples:

e Take U = (0,1) and take u = Y 015, Where 61/,(¢) = ©(1/n).
e Take u € L (U), where u(p) = [ up. Differentiation is defined formally though

loc
integration by parts as 0%u(p) = (—1)/*u(9%y).
Definition 1.2. The Sobolev spaces W*P(U) = {u € L}, (U) : 0°u € LP(U),V|a| < k},

for £ € Ny, 1 < p < oo. Note that differentiation is in the sense of distributions. We
write H*(U) = W*"2(U), which are Hilbert spaces with the inner product

(u,v) = Z / 0*udov.
lal<k ” Y

Definition 1.3. W (U) = C>(U), where the closure is with respect to the W*? norm.

~N
Theorem 1 (Approximation)
For U CcC R",
C(U) N Wke(U) = W*P(U)
where the closure is with respect to the W#?.
If U € C!, then we can improve up to
Co(U) N Wke(U) = W*P(U)
. J
~N

Theorem 2 (Extension)

IfU CCR"and U € C!, for U CC V CC R™, there exists E : WhP(U) — WHP(R")
such that Fu|y = w and the supp u CC V.

We can extend this to W*? if the boundary is C*.
. J

4 )
Theorem 3 (Traces)

For U CC R™ with 9U € C*, there exists T': W'P(U) — LP(OU) which is linear and

boundary such that for u € C(U) N W Tu = ulay.
\- J

Example 1.4
For U cC R", QU bounded,

Hy(U)={u€ H' : Tu=0¢€ L*(0U)}.

The converse of showing T'u = 0 implies H} is the more difficult one.
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1.2 Fourier Transform

We first review the Fourier Transform. We define the Schwartz space:
S={pecC®R"):z°90°p € L™Va, f € N"}.

For ¢ € S, we define
26 = [ el de

Note that F, the Fourier transform is invertible on §. The key properties of the fourier
transform are

F(1/i0zp) = EF @, F(zp) = —1/i0:Fp.

We also have RF
-1 _ _ .
We define §” onto C so that for u € &', there exists C, N such that
u(p)] < C sup  |2°07¢).
laf,|BISN

Note that &' C D'.
Definition 1.5. F : 8" — S’ by u(y) = u(9).

Examples:
* Jo(p) = 0(®) = §(0) = [ = L().
e Take R? and consider u(x) = ﬁ This function is in L},.. If we multiply by

(1+ |z|)"%u € L'(R"), it follows that u € &', since
ww{ﬂum%m+w%smmwmw.

Now, we compute u € §’. Since F is continuous on &', we approximate u and hope
the result converges to the desired result. Define v, — u in S’ for u, € L',

2
e—clel?/2

Try u.(z) = o € L' for € > 0. We want to calculate U, and take the limit
as ¢ = 07. We can evaluate the integral by converting to polar coordinates and
completing the square. Unfortunately, it reduces to an integral that is too hard,

but we will learn asymptotics of the integral as e — 0. We find that u(§) = 27 /[¢|.

We can approach this differently. Note that u = 1/|z| is homogeneous: u(tx) =
t*u(z) for t > 0, for functions. For distributions, we have that for ¢ € S,
u(p(-/t)t™™) = t*u(yp) for ¢ > 0. For the Fourier Transform, if u € S'(R") is
homogeneous of degree a, then u is homogeneous of degree —n — a. It follows that
our Fourier transform is of degree —1.

Furthermore, note that 1/|x| is spherically symmetric, and the Fourier transform
preserves spherical symmetry(note that the Jacobian factor for rotations is 1). It
follows that the fourier transform is also spherically symmetric. It follows that

F/lal) = C/lel+ Y cady”,

la<N]|

but delta terms have too much homogeneity.
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2 December 21st, 2021

2.1 Plancherel’s Theorem

Recall that the Fourier transform is an isomorphism on S - it is a bounded linear operator
whose inverse is also bounded.

Note that
/ 2(8)d¢ = / / / e~ VE dudyde

In the sense of distributions, [ e~ =% d¢ = (27)"5(x — y). Hence,

/// ply)e™ T dudydg = (2)" / u(@)p(@) da.

For u,p € §, we have the following:

(u, @) = (2m)"(u, ¢).

This implies that
[lls = (2m)" 2 [lullo, u € §.

If u, — w in L? then u, — v in &’ by the Cauchy-Schwartz inequality. It follows that
U, — u in S’ but our formula shows that @ is in L?. Hence, F : L? — L? and for
w,v € L2, (@,7) = (27)"{u, v).

Recall last time, we were finding the Fourier transform of u(z) = 1/|z| in R?. For
u € S'(R™) homogeneous of degree a, u € S'(R™) is homogeneous of degree —n — a. In
our example, It follows that u(&) is homogeneous of degree —1. We also observed that u
is invariant under rotations so it follows that @ is invariant under rotations.

A function is homogeneous of degree —1 if v(kf) = a(9 . Since our function is invariant
under rotations, u(§) = g away from zero. It follows from our previous argument that

u(g) = | E\ since ¢ terms have homogeneity of at least —2.
Note that (u,p) = (27)?(u, ) and we find @ by choosing an appropriate .

Agm /%/ r) drdf
—or /0 o(r) dr.

Choosing ¢(r) = e"*/2, we find that the integral is (27)%/2.
Evaluating the other side,

o(&) :/ e ltl?/ 2wl g0 /e 3@ ie)? =5l — 27r/e_€|2/2 = (27r)5/2.
R2

It follows that ¢ = 2.

2.2 Fourier Characterization of H* spaces

Theorem 4
H*R") = {u e S'(R") : (1 + [¢)**u e L?}.
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Proof. Suppose that 0%u € L? for |a| < k. We know that |lull = (27)™/2||7]|. It follows
that d*u € L2 Note that §u = il°!
zi°u € L? for all || < k.

Hence,

(L+ €22 < Cpp sup €.
al<

So it follows that (1 + |¢|?)¥/%u € L2.
Now, suppose (1 + [£]2)%/25 € L2. Tt follows that |¢¥] < Cy (1 + [£]2)*/2 for |a| < k.
Hence £2u € L? so it follows that 9®u € L* by Plancherel’s Theorem.
O

I Remark 2.1. We use the notation (&) = (1 + [£]?)1/2.

Note that the definition does not require k € N.

Definition 2.2. H*(R") ={u € &' : ({)*u € L*},s € R,

Theorem 5

Suppose u € H*(R") and s > ;. Then v(y) = u(0,y),y € R satisfies v €
Hs—l/2(Rn—l)'

Remark 2.3. We should define Tu(y) = w(0,y) for v € S. Then T : H5(R") —
H=2(R*1) if s > 1/2.

Proof. Take u € S. We wish to show that ||v]
Note that

o-1/2n-1) < Ollul| s gn).
o) = [ oy
Rn—1
and by the Fourier Inversion Formula
ulv,y) = 2m) " [ (€0 desds’
so it follows that
o) = em [ [ e o agay

= (2m)7" / /R (&, €)e T dydg

=) [ 6§yt

= en) [ e s

Note that up to constants

2

dn.

0]

b= [ PP = [

[t d
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Then,
2

/R T / a6, n)de,| dn

— / ()2

2ot / A P+ |6 + o) dey / (L4162 + [nf?)dey dn
< / / A, M+ 16 + [0 de, /(1+u2)‘sdudn

~ [1a©)P©>de =l

/\usln VA + 612 + nl?) dfdn—/lu (€)% de.

2
A& L+ &> + )2 (L4 [&l® + nf?)~*/2déy| dn

since
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3 January 26th, 2021

3.1 Sobolev Spaces, continued

Recall, we have U C R" open. We typically assume U is bounded and 0U € C!. For
these spaces, we define

WEP(U) = {u € D' : 0%u € LP(U),|a| < k}.

Recall the extension property: there exists a map E : Wh(U) — W'?(R™) such that
Fuly =w and v = 0 for |z| > R for some R with U CC B(0, R).

We also consider the H*(R"), the fractional Sobolev spaces: {u € S'(R") : (¢)*u € L*}.
This is a Hilbert space with the norm

Julfy. = [ (eelate) e

Last time, we showed that If we have v € H*(R") and s > 1/2, then v(y) : u(0,y),
y € R"! satisfies v € H*"V/2(R"!). Today, we will show that H*(R") C Cy(R"™) if
s > n/2, where Cy denotes continuous functions vanishing at infinity. This means that
there exists T : H*(R") — H*"'/2(R"!) such that for u € S, Tu(y) = u(0,y).

Theorem 6
H*R") C Cy(R") if s > n/2.

Proof. We first prove that if (¢)*a € L? s > n/2 then u € L'(R").

/ alde = [ (€) () alde < 1) lallul
Rn Rn

The first term is finish precisely when s > n/2 [exercise: convert to polar coordinates].
This implies that v € L>(R"), following from the Fourier Inversion formula.

We know that z — @(£)e™¢ is continuous so it follows that x — u(z) is continuous
by the dominated convergence theorem. Finally u(z) — 0 as |z| — oo by the Riemann-
Lebesgue lemma: if u € L'(R"), then u(z) — 0 as |z| — oco.

HS.

Proof. Recall S(R") C L'(R") is dense. Taking v € L', taking vg = v(x)1p.r)(z).
Then vg — v y the dominated convergence theorem. Now take ¢ € C'° with ¢ > 0,
[ =1wth ¢ (x) = Eingp(x/e) Taking vg. = vg * p. € C°(R") and v * ¢, — vg in L
as € — 0.

Hence, we can take v € S so that |0 — || < €/2. Now, |v(z)| < /2 if |x| > R, hence

u(2)] < Ju(z) —v(@)| + |v(z)] < Ce+€/2

which goes to 0 as we send ¢ — 0.

3.2 Gagliardo-Nirenberg-Sobolev(GNS) Inequalities

10
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-
Theorem 3.1
If 1 < p < n and we define p* = n”—f;, then there exists C' = C(p,n) so that for all
u € C°(R™),
lullze < Cl[Vull,.
.

Remark 3.2. We can find the value of p* without doing the computation through
scaling.Take uy(z) = u(Az). We have that ||uy|lp» < C||V(ur)||p- Then, evaluate both
sides and compare the exponent on .

Note that the result is not true for p =n > 1. It is true for p =n = 1.

4 I
Theorem 3.3 (Morrey's Inequality)
For n < p < oo, there exists C' = C(p,n) such that for u € C*(R"™), we have
ullev@ny < Cllully + [Vullp),
where v =1 — %, where
u(x) —u
|y = sup Ju] + sup [u(z) — u(y)|
aty T =y
. 4
N

Theorem 7 (General Formulation)
Take U CC R"™ with OU € C'. Take n € W*?(U).

o if k <n/p, then v € LI(U) where 1/q > 1/p — k/n and ||ul|zewy < Cllul|wr.s.
e k> n/p, then u € C*~I"/PI=17(T7) where v = [n/p] +1 —n/pif n/p € N and

l1—¢forall § >0ifn/peN.
\- J

3.3 Compactness

Definition 3.4. Let B be a Banach space. A subset K C B is compact if for every
sequence {u,} C K such that ||u,||p < C, there exists a convergence subsequence
Up, — U € B.

Remark 3.5. If {u : ||u||p < 1} C B is compact, then B is finite dimensional. We can
have a space B C B and {u € B’ : |lul|p < 1} compact in B. If we have a sequence
{u,} € B" and |ju,| g < C then there exists ny, u € B such that ||u,, —u|lp — 0.

We will take B = L4(U) where 1 < g < p* and B’ = W'?(U).

Theorem 8 (Rellich-Kondrachov)
The unit ball in W'?(U) is compact in L4(U) for bounded U.

11
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4 January 28th, 2021

Recall the GNS inequality: if 1 < p < n, p* = n"—_";), there exists C' = C(n,p) for all
u € CP(R™) so that ||u|p+ < C||Vulpe.

If U @ R", OU € C*, then there exists C = C(n, p, U) such that L(U) > W'?(U) for
l<qg=<p"

4.1 Compactness

Suppose B is a Banach space and B’ C B another Banach space. We say that the
inclusion B’ C B is compact if bounded sets in B’ are precompact in B. In other words,
for a sequence {u,} C B’ with ||u,||p < M, there exists a subsequence u,, and v € B
such that w,, — « in B.

Example 4.1
Take B = C([-1,1]), B’ = C'([-1,1]) with the supremum norm on B and |u||p =

supy <1 ([u(@)| + |v'(2)]).

The inclusion is compact: if we have ||u,||pr < C, by the mean value theorem,
lun(z)] < C and |up(x) — un(y)] < Clz —y|. By Arzela-Ascoli, there exists a
subsequence u,, and u € C' so that ||u,, —ul|c-11) — 0.

Example 4.2

In the previous example, take u,(x) = |2|Ljz/>1/n + (”TIQ + Dljzi<i/n-
Then u, € C'[—1,1] and |Ju,||c1(—1,1) < 2. We can take a subsequence ny = k and
u(r) = |z| € C[-1,1] \ C'[-1, 1] where u,, — u € C.

Given a Banach space B, we have the dual space B* = {linear v : B — C|Vx €
B, |u(x)| < Cllz||g}. The is also a Banach space.

Theorem 9 (Banach-Alaoglu)

Suppose |[u,|| g+ < M. Then, there exists a subsequence u,, and u € B* such that
for all z € B, up, (x) = u(z).

4.2 Rellich-Kondrachov

Theorem 10 (Rellich-Kondrachov)
If U @ R", 90U € C, then for 1 < ¢ < p*, LY(U) D WP(U) is a compact inclusion.

Proof. Take p = 2. Then p* = % > 2. First, suppose U € B(0, R). We can assume
R = 1. Suppose we have a sequence [|v, |1y < 1. There exists a sequence u, € H'(R")
such that u,|lv = vn, ||Un|/mr@ry < 1 and supp w, C B(0,1)(this is the extension
operator).

We have u,, € H'(R™), ||un||m < 1, supp u, C B(0, R). We want ny,, u € L*(R") such
that u,, — uin L?. We claim that u(z) = (27)™" Y u(m)e™* for x € B(0,1) C
[—7, 7" with convergence in D'.

mez"™

12
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Alternatively,

/u(m)md:p =(2m)™" Z u(m) | o(z)e™?* dw

mezZ"

= 2m) " Y dlm)

mezZm™

m).

)

For u,v € L?, [u(z)v(z)de = (2m)™" 3", czm U(m)v(m).
Recall the Poisson summation formula: for n = 1,a # 0,

Zeik‘w = %T Zé(z — 27k /a)

keZ k€EZ

in the distributional sense.

Note that (1 — e'®) 37, ethar = S~ eikar N~ cilbtlar — (. We can rewrite this as
—2ie~"/2gin (ax/2) Y, e*® = 0. Let w(z) = Y, e**® so it follows that supp w C
{22k} rez. It follows that w(z) is the sum of delta functions supported at 27k /a for
k € Z up to constants.

Furthermore, note that w(x + 2ma) = w(x). So it follows that the constants are
independent of the index. To find the constant, for some function, replace ¢(:) with
¢(-+x). Then the right side is ¢, ., p(27k/a+x). Note that $(-+z)(§) = e**3(&) . It
follows that the left hand side is Y, _, @(ka)e™™*. Now suppose supp ¢ € C((0,27/a)).
Integrating both sides, the left side is 27 /a@(0). The right side is ¢ [ p(z) dz = ¢(a)P(0).
Thus, ¢ = -

The Poisson summation formula is more generally >, ;. €% = (21/a)" >, 54 6(x —
2ra/k).

Applying this to a ¢ gives our desired claim from earlier. it follows that ﬁ Y kezn a(k)o(k) =

[ u(x)v(z) de with u,v € L?, supp u,v € [—m,7|"
Note that for u € L?, we have the Plancherel formula,

n -
fulf = [ W@l e = 5" 3 )P
neLn
For u € H'(R") and supp v C B(0, 1), then u € L? and §°u € L?, for all |a| =1,
|0%ulFe = 2m)" Y [0*u(m)]* = 2m)™" Y [m*a(m)|*
mez™ mez™

Claim: Under these assumptions, |[ul| = O(3,,cz- (m)?|u(m)|?) O

13
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5 February 2nd, 2021

Recall the following:

e GNS inequality: For U @ R*, 90U € C', 1 <p < n, p* = nn—fi[, > D,

lup™ < C(llully + [[Vullp)-

e R-K Theorem: For 1 <p<n, 1< q < p*,
WP (U) c LY(U)
is compact: If we have {u,} C W"P(U) and ||u,||y1» < C, there exists a subse-

quence u,, , v € L9 such that ||u,, — ul|, = 0.

5.1 Rellich-Kondrachov, continued

Last time, we considered the special case of {u,} C H'(R™) such that supp u, C B(0, R)
and ||u,||gr < C, which implies that there exists a subsequence u,, and v € L*(R") such
that ||u, — ul||z2 — 0. We continue the proof of the special case.

Proof. Recall that we showed that if u € C5°((—m, 7)), we can write u(z) = (27)™™ > u(n)e™*.

Then L ] L
/ u(@)of) de = 3 3 ) T)

and

2 _ 1 2|~ 2
[ V@R e = o S nPfan)

For u € H' with supp u € B(0,1),

o _ 1 2y N2
[ullzn = WZ(") |u(n)|*.

lunlFn = D (0 [@a(0))” < C.

Lezm
lvli= =[50
ez

We want to show that there exists ny such that ||u,, — uy,,|[r2 = 0 as k,p — oo.

We introduce an operator I,u(z) = (2m)™" >, a()e**. We can think of I, :
L*([-m,7]") — C™». NP can be found through combinatorial methods(left as an exer-
cise)[should be (";p ) or something like that).

We have the following estimate:

1T = 10, )ullz < (p)~[lullz:-

This is because

(2m) 7 ) [P = (2m) ™" Y (070 () < (o) ullzn.

[€]>p [€]>p

Now, we find the Cauchy subsequence.

14



Vishal Raman (May 10, 2023) Math 222b

L. For all p, we have [[Iyun[lcv, < fJunlz < [[tnllm < C. Then {]z] < C} € C¥ is
compact. It follows that we can choose subsequences {nt™'} C {u?} such that
IL,u;, converges and limsupy, , ||uj — uj|| < C'(p)~?, which follows from the triangle
inequality. [let u? = Upy |

2. We choose ny = nj. It follows that limsupy ;o [[tin, — tn, |2 = 0, since

5.2 Morrey’s Inequality

[
Theorem 11 (Morrey's Inequality)

Suppose u € LP(R"), Vu € LP(R™) and n < p < oo. Then there exists u* € C%7(R"),
with 7 =1 — 2 such that u = u* almost everywhere and [[u*{|co, < [lull, + [[Vul],.
-

Remark 5.1. Recall

Jullgo.r = sup [u(z)] + sup A2 = )]
Ty |$ — y|’Y

Proof. We use the Littlewood-Paley Decomposition.

Lemma 5.2 (Dyadic Partitions of Identity)
There exists a function ¢y € C2°(R), ¢ € C°(R\ {0}) such that

o(€) +Z¢(2—j|5|> =i

N ~ Y,

Proof. Choose ¢y € C((—1,1)) with 0 < ¢y < 1 and ¢o(p) =1, |p| < 1/2.

Choose a new function
p1(p) =Y wolp—j) > 1.
jez

Note that ¢1(p — k) = ¢1(p) for k € Z. Choose ¢(p) = o)
Then ( ) ,
- $olp —J .
plp—J) = S = polp —7) = 1.
jeZR v Z@l(p—J) sol(p)z olp = J)
Define ¢(r) = go(igg;) for positive r. Notice that ) € C'°((0,00)). This gives that
> 27 r) =1
€z

Define o(r) = 1 — 372 1(277r). Note that 1o(r) = 1 for r < 1/2 and ty(r) = 0 for
r > 1. It follows that ¥y and v satisfy the conditions. O]

We can extend the Dyadic Partitions of Identity in R™ in the natural way. We then
define the Littlewood-Paley Decomposition as

u = o(D)u + Zw(rm)u

15
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where for a € L®(R"), a(D)u = F~(a(£)i(¢)) where D, = 1/id, and Du = &4, O

16
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6 February 4th, 2021

6.1 Morrey’s Inequality, continued

Recall the statement of the theorem.

Theorem 12 (Morrey's Inequality)

Suppose u € LP(R"), Vu € LP(R™) and n < p < oo. Then there exists u* € C%7(R"),
with 7 =1 — 2 such that u = u* almost everywhere and [[u*{|lco, < [[ull, + [[Vaull,.

Proof. Recall for u € S(R), @(5) = &u(€) where Dy, = 10,,.

We define a Fourier multipler a € L>(R") so that a(D)u = F~(a(&)u(€)) foru € S.
Note that for a € L, ||a(D)u||r2 < sup |a|||ul|zz. For ¢» € S(R™), if we take u € S’, then
Y(D)u e S, and Y(§u(€) € S'.

Recall the Littlewood - Paley Decomposition. We had a lemma: there exists ¢y €
C*(R) and ¥ € C°(R \ {0}) such that for all £ € R™,

o(€]) +Zw(2ﬂ‘yg|) — 1.

Slightly abusing notation, we will write 10(£) = ¥o([¢]) and ¥(§) = ¥ (|¢]).
The full L-P Decomposition is given as follows: given v € S, a = ¢o(D)u +
> 21 ¥(277D)u. We will write h = 27/ as a shorthand.

Lemma 6.1
Suppose x € C*(R"). Then for u € S(R"), ||x(hD)u||z~ < Ch™™?||u|1» and
Ix(hD)ulle < (2m) 7" [ X][1[lullp-

Proof. Recall the following inequalities
e Holder’s Inequality: || fgll1 < || flpllgllq for 1/p+1/g=1for 1 <p < 0.

e Minkowski’s Inequality: [|f + gll, < | fll, + llgll, and

H/F(x,t) dt

e Young’s inequality: [|f  gll, < fllx/lgll,

< / |G dt.

We have

W(hDYulz) = F~ (u(hE)a(E)) = (2m) " / / &8 (he Yuly)dyde

T (55) s

SIXC/R) gl

= (27h)™"

|~

< (2wh)™

>

17
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Then,
1/q
RG], = ( \x(y/mwy) — 1]l
It follows that
(hD)u()| < Ch=/ljull, = Ch="/7|ju]l.

For the second inequality, note that x(hD)u(x) = (2mh)"X(-/h) * u. Applying Young’s
Inequality,

1 N I .
[x(hD)ull, < WHX('/h)HlHUHp < WHXIIMIUHp-

Theorem 6.2

For u € LP, 1 < p < oo, u € C%(R") if and only if for every x € C>(R™ \ 0),
IX(hD)ulls < CRY.

Proof. We start with the forward direction. Note that

X(hD)u(w) = s | R =) Wyl dy

o)™ / R)ul — yh) dy
— (2m)" / L) (ule — yh) — ulx)) dy

~—~

So it follows that
(hD)u(a)| < Cllulens [ IRy < Clulest” [ 1RW)ol" dy

[]

and the last integral is bounded since Y is a Schwartz function, so it follows that
Ix(hD)u(x)| < Cllul|co~h?. O
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7.1 Fourier Transform proof of Morrey’s Inequality
Recall the Littlewood-Paley decomposition: There exists 1)y € C°(R™), ¢» € C>°(R"\{0})

such that o
L=1o() +> w27
§=0

From this, we have for u € &',
u = o(D u+2¢ (279 D)u

More generally, for a € S(R"), a(D)u = F~*(a(£)u(€)). We were proving the following
theorem:

Theorem 7.1

For w € LP, 1 < p < oo, u € C%(R") if and only if for every x € C>°(R"™ \ 0),
IX(hD)ulls < CRY.

Proof. We proved the forward direction last time. We now show the converse.
Denote

A(w) = sup A (A D)l -+ mas [ (D))

where 9, (§) = & (€).
We have the hypothesis: |[jull, + A,(u) < co. We want to show that ||ullcv <
C(llull, + Ay(u)). We first bound ||u||«. Note that

[ulloe < ll¥0(D)ulloe +Z 14277 Dyulloc
< |[¢oo(D u|yw+22 I
< Cllull, + (27 = ) A (u).
Now, we bound the quotient term, |u(x) — u(y)|/|x — y|7. In order words, we want

u(z) = u(y)| < C(llully + Ay (u))r?,

if |z —y| <r.
Note that

u(z) —uly) = Po(D)u(z) — )+ Z Y(27 D)u(z) — (277 D)u(y))

It is enough to prove that |¢(D)u(x) — ¥o(D)u(y)| < Cr7||ul|, and
> [ D)u(x) — (277 Dyu(y)| < CrrA, (u).
=0
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Note that
[ho(D)u(z) — vo(D)u(y)| < sup(V(¢o(D)u))|z — y|

< |x—y|@sup / VIdo(z — y)llu(y)] dy

1

< |z = yls—=[IV&ollqllull,
(27)

For the second inequality, we prove for both high frequency and low frequency estimates.
For the high ones,

[ (hD)u(z) — Y(hD)u(y)| < 2[[¢(hD)ulle < 2h7A, (u).
For low frequencies,

[ (hD)u(x) = ¥ (hD)u(y)| < Crmax || Dy, (hD)ul| s
= Crh~t max |\hDy, b (hD)ul| s
= Crh! max |k (hD)ul] o
< Crh7! max |k (hD)u| s
< Crh AL (u).
Then, note that
Z Cr2707D < C'rsty
2i<s

and
Z C2—jy < C"s™,
21>5
It follows that

Z V(27 D)u(z) — ¥ (277 D)u(y)| < C'Aw(u)(rsl_7 +577) < COr'A,(u)
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8.1 Finishing Morrey’s Inequality

The original statement of the theorem.

Theorem 13 (Morrey's Inequality)

Suppose u € LP(R™), Vu € LP(R") and n < p < co. Then there exists u* € C%7(R"),
with 7 = 1—2 such that u = u* almost everywhere and ||u*||co, < C([Jull,+[|Vull,).

Last time, we showed the following theorem:

Theorem 14

For u € LP, 1 < p < oo, u € C%(R") if and only if for every x € C>(R™ \ 0),
Ix(hD)ul| < ChHY.

Recall that
Ayfw) = sup b7 (b D)l + max (D))
<h<

where 5, (§) = &:0(€). We proved this by showing that ||ul|cor < C(JJull, + Ay (uw)). We
now show the complete proof of Morrey’s Inequality.

Proof. 1t suffices to show that A, (u) < C||Vul|,. Recall that for all x € C*(R"), we
showed that || x(hD)u|| < Ch="/?||ul|,. Note that

lp(AD)AD, ullse < ch'="/7||[Vull,

= lles(hD)ull < CH| V.

We would like to write ¢ € C2°(R™\ {0}), ¥(&) = > &x;(§) with x; € CF. We can

do this with 3 & (S).
It follows that

[ (hD)ullos <D X (hD)ullow < OB [[Vull,-

j=1
[l

We can use this result to show regularity properties for solutions to PDEs. For example,
one statement is as follows: suppose u € L', Au = f € C*7 for 0 < v < 1. We could
show that u € C**+27,

8.2 Final Comments about Sobolev Spaces

Definition 8.1. Suppose U CC R” with U € C'. Then W,?(U) = C>(U) where the
closure is respect to the W norm.

Fact 8.2. Wy = {u € W'?(U) : Tu = 0}, where T : W'#(U) — LP(9U) linear and
bounded and for u € W'?(U) N C(U), Tu = ulay.

Fact 8.3 (Poincare Inequality). Suppose 1 < p <nand 1 < ¢ < p* = n"—_";). Then
[ully < ClIVullp.
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Theorem 15 (Poincare Inequality(v2))
For all 1 <p < oo, [Jull, < C||ul|,.

Proof. Suppose p < n. This follows from the version 1. Suppose co > p > n. In this

case, take ¢ = n —e. Then ¢* = @ Choose small enough € so that ¢* > p. Then, we
apply Poincare 1: ||ul|, < [Ju|s < C||Vu|, < C||Vul|,. For p = oo, the result follows
from Morrey’s inequality. O

8.3 Duality
Recall the Riesz Representation Theorem for Hilbert Spaces:

Theorem 16 (Riesz Representation)

For ® : H — C with a Hilbert space H, if |®(u)| < C||ul|, there exists v € H such
that ®(u) = (u,v).

Fact 8.4. H*(R") = (H*(R™)*: if u € H~*(R") and v € H*(R"), u € H*(R"), then
(u,v)r2 = [uv is well defined, and for any ® : H¥(R") — C such that |®(u)| < C|ul
there exists v € H™* such that ®(u) = (u, v) 2.

Hs,

Proof. First assume u,v € §. Then

[ = [aei@ - en [ @7

so it follows that
[(u, v)]2 < (2)" ||ul

Hs ’U“H*S

Conversely, suppose we have ® as above. Riesz implies that

B(u) = () = 2n) " [ (%55 = 2m) " [ WD

and we finish by setting © = (-)?*@. O

8.4 Duality on Bounded Domains

We define H(U) = {u € D'(U) : Vo € C>(U), |u(p)| < Cl|lpg:}. The norm on H ! is
given by
lull=1 0y = sup{Ju(p)| : ¢ € Hy, [lollm < 1},

which is the usual operator norm, treating u as a linear functional on H'(U).
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Example 8.5

We claim

H((0,m) = {u(z) = Zan sinnx : Z |an|*n? < 0o ~ ||lu|m}

Then,
H(0,7)) = {v(z) = Zan sinna : Z |an|*n? < oo},
n=1 n=1

where we take convergence in the sense of distributions.
Then,

e
<U,U> = Zana - Znannilgn < HUHH1HUHH‘1
n=1
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9.1 Calculus of Variations: Minimizing Distance in the Plane

We start with a motivating example. Take points a, b in the x-axis, ¢, d in the y-axis. We
wish to find a function y = f(x) such that f(a) = ¢, f(b) = d and the graph of f has the
shortest length. Recall that

L) = [ (4 f@

We wish to minimize L over all paths from a to 0. If f is a minimizer, then for all
¢ € C=((a,b)), L(f +tp) has a minimum at ¢ = 0. This implies that % L(f +t¢)[;—o = 0
for all ¢ as above. Then,

d d [°
GHt) =5 [ i

ba 12\1/2
[(1+ (f + te)*)?) da

) / @ (@)(f(2) + 1))
a (

L+ (f'(z) + to! (x)?)1/?

—~—
S

Applying t = 0, we have

O
-/ T papE

for all ¢ € C°((a,b)).
Integrating by parts, we get that

/:W) (u ¥ <§,'(<fc)>>2>1/2)/ =0

i (arim) =0

aso f(x) =ax+ p.

The implies that

with f(a) = ¢, f(b)

=d.
We find that f'(z) =

9.2 Calculus of Variations: Minimizing Area in R?

Take U CcC R?, OU € C'. We wish to minimize the area of the graph with the condition
that f = g on OU.
We have

A = [ 0 19s@r) 2

We wish to minimize A(f) over f satisfying f = g on 0U.
If f is a minimizer, t — A(f + tp), ¢ € C°(U) has a minimum at ¢ = 0. So,

d
%A(f +tp)]i=o0 = 0.
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Doing the same calculation as before, we have
0
GAG+ o= [ S04 |VS 4 10 ds
U

Y .S/
Ju VP2

_ _Jm o Jwm
- /ﬁ ((1 T melﬂ)m i ((1 T mel/?)xj o

As before, this implies that

A+ [V ), NA+ VP2,
This is called the Minimal Surface Equation.
We will not solve this, but how could we do it? Consider f € H'(U), and note that
Tf =g € L*9U) is well-defined. If we take m = inf{A(f) = f € H'(U), flov = g}
Then, there exists f; € HY(U), filov = g with A(f;) — m. Could we find f;, — f7?

9.3 Calculus of Variations: General Setup

Take U CcC R™. Take L: R” >< R x U — R in C*, written as L(p, z,z). We introduce
the functional I[w] = [, L( w(z), z) de, with w|sy = g.

Example 9.1
In the minimal surface problem, L(p, z,2) = (1 + |p|?)"/2.

We first derive an equation satisfied by the minimizer. As before, we have I[w] =
Ji L(Dw,w, z) dz, a minimizer. This implies that < I[w + t]|,—o = 0 for all ¢ € C*(U).
Then,

q
/U L(Dw + tDg,w + tp,7)] drlig = /U (D - D,L(Dw, w,z) + pD.L) dx

— /U (— Z(Lp].(Dw,w,m))xj + DZL(Dw,w,x)> pdx

n

:>—Z J(Dw,w,x)),, + D.L(Dw,w,r) =0,

the Euler-Lagrange Equation.

Example 9.2
Take L(p, z,z) = |p|?/2 — f(x)=.

Ml = [ (Vu@P/2= f@)u(a) da.

Since L, = p;, the Euler-Lagrange equation is given by

—Zw% )=0= —Aw = f,wl|ogv = g.
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We can generalize this as follows: If we take L = |p|?/2 + F(z) and f(z) = F'(2).
The Euler-Lagrange equation is then —Vw = f(w). For example, if we take f(z) = 27,
Lo+l
F(z) =27,
We could also take non-constant coefficients: L(p, z,x) = 3 > a;;(z)p;p; — f ()2, where
aij = aji-
Then, L,, = %Z?Zl a;;(x)p;. Then, the Euler-Lagrange equation is given by

" 04, (ay05,w(x)) = f(x).

ij=1

When 3~ a;;()&&; > ¢|€)? for all € € R™, x € U, this is solvable.

0.4 Existence of Minimizers

e Coercivity: There exists .0, 8 > 0 with L(p, z,u) > a|p|? — 3, for 1 < ¢ < oo, for
all ze R,z e U.

The condition gives the following bound: Iw] > af|Dw|| — Bu(U). We can always
set B = 0 by translating L by a constant. Taking A = {w € WY(U) : u|or = g},
we minimize [[w] over A.

e Lower semicontinuity: Suppose we have 1, — u weakly in W4, Then,

Iu] < liminf Iuy).
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Recall, we have L : R" x R x U — R for U € R", 0U € C*. We denote L = L(p, z, ),
D,L = (0,L,...,0,,L), etc. We also defined

Iw] = /UL(Dw(x),w(m),x) dx, w|sy = g.

As an example, L(p,x) = %Zaij(x)pipj — f(x)z. Last time, we used the principle
that if w is a minimizer, for every ¢ € C°(U), t — I[w + tp] has a local minimum at
t = 0. This implies that if w is a minimizer, L satisfies the Euler-Lagrange equation:

- Z(ij(Dw,w,w))xj + D, L(Dw,w,z) = 0.

10.1 Second-Derivative Test

If i'(0) = 0,4"(0) > 0, then we have a local minimum at 0.
By definition i(t) = I{w + tg], where ¢ € C2°. Recall that

i'(t) = / (Z ©a,0p, L(Dw + tp, w + tp, x) + 00, L(Dw + tp, w + to, x)) dx.

Then,

/ (Z #a; Pa O Lt Z 02, 0:0p, L + 902Lzz> "

If this is at least 0 for all ¢, what do we get about L? This makes sense for ¢ that is
Lipschitz and 0 at the boundary. If we choose ¢(z) = ep(£)((z), where ¢ € C2°(U) and
p consists of triangles with slope +1 starting at 0. Then |p'(z)| = 1 almost everywhere.

Using this ¢, we get ¢,; = ep(x§/€)((x) + &;p'(x€/€)¢(x) = &;p'(x€/€)((x) + O(€) and
0< / Z &0, L)((0)°¢%) + O(e)
E_>0 /Z 55] plpj )

for any ¢ € C°(U), so it follows that for all § € R", > &&; Ly, (Dw(r), w(z),z) > 0.
Hence, it is useful to assume convexity:

Zg’“f] pipj p7z7$) ZO

for all £ € R, (p,z,2) e R"" x Rx U. (

1
Lp+1t§) = L(p) +t > &Ly, L(p) + t2/0 (1= 5) ) &&jLpy, (p+ st&) ds
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10.2 Convexity
For smooth L, convexity is the statement

ZLPin <p7 Z,I)&fj Z C|£’2 Z 0.
for all £ € R™.

Example 10.1
for L =1/2>" a;j(x)pip;, aij = a;;, convexity is that

> aii(x)&g; > cléf

We call this an Elliptic operator.

Example 10.2

For the minimal surface equation, L = (1 + |p|?)*/2. Note that L,, = e

Ogg DiDj d:;(1 + |p|?) — pip;

D = —
T+ pP)YE (14|22 (1+ [pl?)*/2
Then,

1
> Lonéits = s (D 160+ 16F) = X éwitom;)
= (L+IpP)2(Igf? + €llpl - (6,7)%) > 0

This is not strictly convex, since as p — oo our term goes to 0.

10.3 Existence of Minimizers

Recall our conditions:

e Coercivity: There exists o > 0,8 > 0 with L(p,z,u) > alp|? — 3, for some
l<g<oo,forallze R, xeU.

The condition gives the following bound: I[w] > af|Dw|[ — Bu(U). We can always
set 3 = 0 by translating L by a constant. Taking A = {w € W"4(U) : u|oy = g},
we minimize I[w] over A.

e Lower semicontinuity: Suppose we have 1, — u weakly in W4, Then,

Iu] < liminf Iug).

As we will see, the coercivity leads to nice compactness results via Rellich-Kondrachov.
How can we use lower semicontinuity? Assume A is nonempty. Take m = inf,emea I{w].
Then, we have I[w;] — m. Assuming coercivity, we have ||Dwj,||, is bounded. If
wy € A, then [[w — wyll; < ||Dw — Dwy||, by the Poincare inequality. So it follows
that ||w;||, < C. From the Banach-Alaoglu Theorem, we have w, is weakly compact in
W4, Passing to a subsequence, w; — w in W%, From lower semicontinuity, we have
Iw] < liminf I{w;] = m. This implies that I[w] = m.
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11.1 Weak Convergence

We have a Banach space B with dual B* with v : B — C linear in the dual if for all
v € B, lu@)| < Cllall.

Theorem 17 (Banach - Alaoglou)

The unit ball {v € B* : ||u||g- < 1} is weak-* compact: if we have ||u;|| g« < 1, then
there exists a subsequence and u € B* such that for every x € B, u;, () — u(z).

4 )
Corollary 11.1

If B is reflexive, (B*)* = B, then {z : ||z||p < 1} is weakly compact. Given ||z;|| <1,
there exists © € B and a subsequence so that u(z;,) — u(z) for v € B*.
\- J

Example 11.2
Take B = L(U) for 1 < ¢ < oo. This is reflexive since B* = LY (U) with ¢~ +
() t=1forl<q <oo.

I Remark 11.3. For u; € B, we say x; — x € B iff for all uw € B*, u(z;) = u(x).

o If B reflexive and z; — z, then ||z|| < liminf ||z;||. This is because |z(u)| =
i |, ()] < lim ind [ - | and o] 5 = supy. s ()]

B*

o If B reflexive and z; — x, there exists C' such that ||z;||p < C. For every
u € B*, |z;(u)] < C(u), which implies by the Uniform Boundedness Principle that
25 < C.

e (We don’t assume B is reflexive) Suppose V' C B is a closed subspace. Then V' is
weakly closed. This is a special case of Mazur’s Theorem.

Proof. We need to show that if z; € V, 2; = o € B, then 2 € V. For u € B*,
u(z;) = u(x). Soif x ¢ V, we want to construct u € B* so that u(z;) = 0 and
u(z) = 1.

Recall Hahn-Banach: If we have a subspace V ¢ Band ¢:V — C with |¢(x)| <
C|lz|| g, with x € V, then there exists ¢ € B* so that ¢|y = @.

Take V =V + Cz. Define ¢ : V — C and define Plytaxr)=a,yeV, aeC. It
suffices to check that it is bounded. We need ¢(y + ax) < Clly 4+ ax||. Suppose not
- for every n, there exists y,, a,, such that |a,| = |P(yn + anx)| > nllyn + anz]|.

Dividing by «,,, we get
1/ > |lyn/om + | 5.

But this would imply that —y,/a,, — x € V, but V' is closed.

29



Vishal Raman (May 10, 2023) Math 222b

11.2 Calculus of Variations

We now move back to calculus of variations. We have I{w] = [, L(Dw(z), w(z), z) dx
with U € R", UC*. We have L = L(p,z,z) € C®°(R" x R x U). We wish to minimize
L under the constraint that w|sy = g.

Recall that we introduced i(t) = I{w + ty], ¢ € CX(U). If w is a minimizer of I[w],
then

e i'(0) = 0 for all o implies that —3 "7 | 0, (0,, L(Dw,w, r)) + 9. L(Dw,w,r) =
0(Euler-Lagrange equation).

e If /(0) > 0 for all ¢, then we have the convexity condition: for all £ € R",
Zi:j 8piaij(Dw, w?‘x)figj > 0.

We introduced the conditions:

e Coercivity: there exists 1 < g < oo, @ > 0, § > 0 such that L(p, z,z) > a|p|? — 5.
This implies that I[w] > af Dwl|[I — 3.

o (Weak) Lower semicontinuity: If u; — v and Du; — u weakly in L9(U), then

Iu] < liminf I'u,].

Remark 11.4. Take A = {u € W4 : u|gy = g} # 0. If we put m = inf 4 I[w], there is a
sequence wy, € A such that I[wg] — m. Using weak compactness, we have a subsequence
wy, — w in W with w € A. Then m < I'w] < liminf I'fw;,] = m, so I[w] = m.

11.3 Getting around Lower Semicontinuity

Theorem 18

Suppose L > —C and p — L(p, z, ) is convex for all (z,z) € R x U. Then, for any
1 < g < oo, wr Iw] is weakly lower semicontinuous in W4 if w; — w in L9,
Dw; — Dw in LY, then I[w] < liminf Iw,].

I Remark 11.5. Convexity implies that for all pi,pa, L(p1) > L(p2) + DpL(p2) - (p1 — p2)-

Proof. We assume that u;, — u in L? and Duy — Du in L?. We have ¢ = lim inf I [uy]
and we want [[u] < /.

By taking a subsequence, we can say that ¢ = lim /[u]. By taking another subsequence,
we can say u,, — u € L9, since weak convergence implies that ||ug|l, < C and ||Dugl|, < C
and using compactness of W1? in LY. By taking a subsequence we can use uj, — u almost
everywhere[this is the Riesz-Fisher theorem|. By Egorov’s Theorem, for every ¢, there
exists a set F. such that m(U \ E.) < € so that uy — u uniformly on E.. Note that
m(U) < oo.

We define a set F, = {z € U : |u(z)| 4 |[Du(x)| < t}. Then m(U \ F.) — 0 as ¢ — 0.
We define G, = E. N F,, with m(U\ G.) <m(U\ E.) + m(U \ F.) — 0 as ¢ — 0.
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Without loss of generality, we can assume L > 0. Note that
Iu] = / L(Duyg, uy, )
U
> / L(Duyg, uy, )
Ge

> / L(Du, uy, x) + D,L(Du, ug, x)(Duy — Du) dz
Ge

Then, lim st L(Du,uy,x) = fGe L(Du,u,x) since uy — u uniformly on G, and Du is uni-
formly bounded on G.. For the second term, D,L(Du, uy, ) — D,L(Du,u,x) uniformly
on G. Then Duy — Du in L9. Then writing [(D,L(Du, uy, x) — D,L(Du,u, x))(Duy —
Du) + D,L(Du,u,x) - (Duy — Du), Duy — Du is bounded in L? and (D,L(Du, uy, z) —
D,L(Du,u,x)) converges uniformly to 0, so the first term goes to 0. For the second term,
D,L(Du,u,x) is bounded and Duy — Du converges weakly to 0.

It follows that

¢ = liminf Iug] > / (Du,u,x)dx 0, L(Du,u,z)dx = I[ul.
c U

Hence, I[u] <liminf I[uy], as desired.
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12 February 25th, 2021

12.1 Existence of Minimizers

We proved last time that a convexity condition was sufficient for showing the weak lower
semicontinuity condition.

Example 12.1

A simple example is L(p, z,z) = > a;i(z)p;p; where a;j = aj; and > a;j(x)&E >
01¢|?. for all £ € R", x € U. In this case, A = {u € H'(U) : uloy = g}, if
g € HY/?(8U). Then, we minimize [, > a;;(2)0y,udyudz = 0 with ulsy = g.

4 )
Theorem 19 (Existence of Minimizers)
Suppose p — L(p, z,z) is convex and L(p, z,x) > alp|?—F,a >0, >0,1 < g < oc.
Suppose that A = {w € W(U) : w|oy = g} # 0 with g € LY(9U), then there exists
u € A such that I{u] = min,eq I[w].

\- J

Proof. We can assume without loss of generality that § = 0. Put m = inf4 I{w] # oc.
Choose a sequence uy € A such that I[ug] — m. Then Ifuy] > « [ |Dug|?. This implies
that || Dug||z. < C.

Fix w € A and note that u, — w € W%, Recall the Poincare Inequality: if v € W,
then ||v||, < C||Dv||,. Hence

[uklly < Nlur —wllg + wlly < [|Dur — Dwlly + [[wllg < |Dugllg + lwlwra < C".

This implies that ||ug|/w1« < C. Hence, there exists a subsequence uy, — u in W4,
This means that u, —w — v —w in Wh4 but v, —w € Wol’q, a closed subspace in W14
which implies that u — w € Wy?. Hence, u € A. So, it suffices to show that u is a
minimizer.

From the convexity of p — L(p, z,x), we have I is weakly lower-semicontinuous. In
other words, I'fu] < liminfy o [ug] = infeq [{w]. Hence, I[u] = inf,eq I[w].

O

12.2 Uniqueness of Minimizers

Theorem 20 (Uniqueness of Minimizers)

Suppose L = L(p, z) and there exists § > 0 such that for all ¢ € R”, p € R, x € U,
we have Y L, (p, 2)&&; > 6|¢|*(uniform convexity). Then, any minimizer of I[u] is
unique.

Proof. We have that L(p,z) > L(q,z) > D,L(q,xz)(p — q) + g|p — ¢|* from strict con-
vexity (this follows from the Taylor remainder). Let u, @ be minimizers of I[w]. Take

v = " From strict convexity, we have

Tlu] > I[v] + /DpL(Du/2 + Dii/2,x)(Du/2 — Di/2) + /8| Du — Dii|* dx.
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Similarly,
Ia) > Iv] + /DpL(Du/2 + D)2, 2)(Di/2 — Du/2) + 6/8| Du — Di|? dx.
Then,
m = Ilu)/2 + I[a] /2 > I[o] + 9/8/ \Du — Dif?dz > m + 9/8/ \Du — Dif? da.

This would imply that 6/8 [ |Du — Du|? dz < 0, which implies that Du = D almost
everywhere but u|gy = U|sy so u = @ almost everywhere. ]

12.3 The Euler-Lagrange Equation

Recall the example L(p,z) = > a;;(x)pip; > 0|p|* with a;; = aj;. This has the Euler-
Lagrange Equation:

Z axi<aija$ju) = 07 u|<9U =g.

ij=1

For all g € H'/?(QU) we can find u € H'(U) such that the Euler-Lagrange equation
weakly(in the sense of distributions). Furthermore, u is unique. We will show this next
time.

Today, we show that we can solve the equation:

Z axi(aijaxju) = f7 U|3U = g?f € Hil(U)

ij=1
with uw € H(U). We can write
Iw] = /Z (ai;(2)0y,wdy,w — f(z)w) d
In this case L(p, z,z) = Y a;;(x)pip; — f(x)z for z € R, so this is not bounded below.
However, p — L(p, z,z) is convex. So it suffices to deal with the coercivity issue.

What we really need is that I{w] > [, |Dw]* — 3.
Recall the Peter Paul inequality:

2ab < a*/e + eb?, Ve > 0.

)20 [ 1uf = 170120 [ 1Dwp~ o [172 =5 [ 1or

If we fix wy € H' with wy|gy = g € HY?, we have

1 € C €
> 2 4 2 € 2 2\ < g L € 2
ol 26 [10wp=g [1P=5 (1w =P+ [k} =6 [ 1Dui- T~ ol

It follows that

Tw] 29/|Dw|2—C€—e/]Dw|2 - (9—6)/]Dw]2—06.

Hence,
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Choosing € < 6/2, we have
Iw] > g/\DwF—C’6 > a/|Dw|2—C.
One problem: we assumed f € L?. How do we fix this? We solve 2 problems:
Z(aijuxj)xi = fe H ' uloy =0,
and u € Hy(U). Then, [fu < |[flgllullmy < cIfIf-1 + ellullyy. For w € Hy,

[ullgg < C||Dulls. Then, we apply the same argument.
If not, we take v = u — u and we have

— Z(aijvxj)xi =0,v € Hy(U).

Otherwise, we multiply by v and we use the definition of weak solution. This implies
that [ Y a;;vs,0,,, but it is also at least 6 [ |[Dv|?, which shows that it is exactly zero.
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13 March 2nd, 2021

Today, we find conditions on the Lagrangian so that the the E-L condition holds:

Z Op, L(Du(x),u(x),x))s; + 0. L(Du,u,z) = 0.

13.1 Euler-Lagrange Equation, continued

We will make the following assumptions: for all p € R, 2 € R, z € U,
o [L(p z,x)] < C(|p|* + || + 1),
e ID,LI|D.L| < C(lplt~" + 2] + 1),

It is natural to consider the E-L equation in a weak sense, that is for all v € C>°(U),

/Zaijvzj + 0,Lv = 0.

The conditions imply that |8,,L| < C(|Dul?™! + [u]?"!) € L7 (U), and the same with
0.L. This implies that our integral condition would make sense for v € VVO1 9(U).

Definition 13.1. Suppose our assumptions from above hold(bounds on |L| and |DL|)
and u € A = {w € WH(U) : w|gy = g}. We then say that the E-L equation holds
weakly if for all v € Wy (U), we have

/Zﬁijvxj + 0,Lv = 0.

Theorem 21

Suppose u € A is a minimizer for L satisfying the bounds. Then u is a weak solution
to the Euler Lagrange equation.

Proof. Define i(t) = I[u + tv] where v € Wy, Let

dz

i(t) —i(0) / L(Du+ tDv,u+ tv,z) — L(Du, u, x)
/ o /
and call the integrand L'(x).

We have that L'(z) =0, > L,,(Du,u,x)v,, + L,v almost everywhere in . We want

to bound |L!(x)| by a function in L' so that we can apply the dominated convergence
theorem.

Note that (& +1tn) — f(§) =n f(f 1 (& + tn) dt. This means that

t
L(Du +tDv,u + tv,z) — L(Du,u,x) = / Z Ly, (Du + sDv,u + sv,2)v,, + L v ds.
0
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Now, we bound this using our assumptions. Namely, recall that |[DL| < C(|p|7! +
2|77t +1). Tt follows that

t
|L(Du+ tDv,u + tv,x) — L(Du,u,z)| < / Z |Lp, (Du + sDv,u + sv, x)vg,| + |L.v| ds
0
¢
< C/ (|Du+ sDv|" ' + Ju + sv|T ' + 1)(|Dv| + |v]) ds
0

t
< C/ (L+ [Du"™" + [Do]" " + [ul ™™ + o] )(| Do + [v]]) ds
0

< Ct (|Dul" (| Do + [v]) + [u|* (| Do| + [v]) + [ Dol + [v]7 + 1)

We would like to say
(|Du|q_1(|Dv| + ) + Ju|T (| Do| + |v]) + |Dv]? + |v]? + 1) < C (|Dul? + |u|? + |Dv|? + |[v|T+ 1).
We do this via Young’s inequality: ab < “q—q,/ + %q. This implies that
| Dul*|Du| < C(|DulD7 + | Do),

and doing this for the other product terms gives the desired inequality.
It follows that |L!(x)| is bounded by an L! function, so we can apply the dominated
convergence theorem, which gives the result. O]

Remark 13.2. The converse is not necessarily true. However, we have the following
theorem:

Theorem 22

Suppose u € A is a weak solution to the Euler-Lagrange equation. If (p,z) +—
L(p, z,x) is convex for all = € U, then w is a minimizer.

Proof. From convexity, we have that L(p, z, x)+D,L(p, z,x)-(q—p)+ D, L(p, z, x) (w—=z) <
L(q,w, z). Upon integrating, if we set p = Du, ¢ = Dw, z = u, w = w(z) for w € A:

Ifu] + /UDp(Du, u,x) - (Dw — Du) + D, L(Du,u,x) - (w —u)de < [w].

But w—u € VVO1 “ and u weakly satisfies the equation so it follows that the integral is
0 and for every w € A, Iu] < Iw]. O
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14.1 Regularity

We will make the assumption that L(p, z,z) = L(p) — zf(z). We also assume that
|L(p)| < C(|p|*+1) and |D,L(p)| < C(|p|+1), [DzL(p)| < C. Finally, we assume strong
convexity: Y Ly, (p)&&; > 0|¢|* for all p, & € R™.

Example 14.1

L(p) = 3|p|* is an example of a function which satisfies the above conditions.

Last time, we showed (with weaker assumptions) that if I[u] is a minimum, then u
satisfies the E-L equation weakly. With a convexity condition, we have the converse as
well. We assume that u|sy = 0 for simplicity.

Proposition 14.2
There exists a constant C' = C(L,n, U) so that ||ul|g: < C||f]|2-

Proof. We use the weak E-L with v = u. Namely,

/ZL (Du)u /fu

Then, strict convexity implies that (DL(p) — DL(0)) - p > 6|p|?, with p = Du. Hence,

0/U|Du|2§/UDI,L(Du)~Du—/UDL(O)~Du:/Ufu,

where the second term is 0 by the divergence theorem. Then

2
0 / Duf < / fu< / L el = |fIP /e + ellull™
U U U €

Hence, || Dull3 < Z| fII* + §|lul[>. By the Poincare inequality, [ull> < C||Dulj3, so it
follows that by taking epsilon small enough. O]

14.2 Interior Regularity

Theorem 23

Suppose that — > (L,, (Du)),, = f weakly, f € L? u € Hj with the same bounds
as before. Then u € H? (U).

loc

Proof. Take V€ W & U open sets. Choose a function ¢ € C2°(W) and ¢ = 1 near V.
Choose Diu(x) = w If h is small enough then it is well defined on U. Note
that for v € C2*(W), [uD;"v = — [vDlu. Then, we define v = —D; "(¢(2D}u) €
H{(W) c H(U).
Then noting that (D} "v),, = D;"(va,),

| ¥ Db (D)D), = = [ £D D)
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DL, (Du)) / ZL,,,, (sDu(z + hey) + (1 — s)Du(z))ds - (D, ulz + hey) — Dy u(z))

— Z aj;(x) Dy, ()

where
a?j (x) = /0 Ly,p, (sDu(z + heg) + (1 — s)Du(x)).

So, we have

| Z% DD}, (Dja,, = = [ 1D D},
The left hand side is
Z h Dh Dh 2 hDh 9 Dh
a/,ij kuxj k‘uxzc + Za” k’uxj CCIZ ku.
The first term is bounded from below by | D! Du|?¢? by strict convexity. The second

term is bounded by — [ ¢|DpDu||Dpu| > —¢ [ (*|DpDul® — L[ Dpul?.
We end up with

/ Dt Duf?dr < C / (f? + D).
w
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15 March 9th, 2021

15.1 Inner Regularity

Last time, we discussed regularity in the special case where L = L(p) — f(z)z. We
also assumed that |DFL(p)] < C(1 + |p|*”*) and strict convexity: for all p,§ € R,
ZLpipj (p)fzgj 2 6|€|2

We know that for U € R”, 9U C' and f € L?, for all g € H'/2(9U), there exists u
such that for all v € H}(U),

/U(Z Ly, (Du)vy, — f(z)v)dr =0, ulsy = g.

Theorem 15.1

Suppose that — > (L,, (Du)),, = f weakly, f € L?, u € Hj with the same bounds
as before. Then u € H?_(U).

loc

Remark 15.2. The main idea in the proof is that you can estimate derivatives with cutoff
functions if you only need local results. This requires carefully choosing the width of the
quotients to stay away from the boundary.

Proof. We had a function Dju(x) = w, and we chose a ( sothat (=1inV
and ¢ € C°(W) where V.C W C U.
Then, we defined v = —D, "(¢?D}u). Last time, we showed that

| Ed@ntu, @0t = [ 107¢ D),
where we have the bounds
O <) ali(w)&ig; < Clef.
Differentiating the expression, the LHS gives
|3 ) D, Dl )6? + [ 3 aly(w)Dhu, 26, D
The first term is bounded below by 6 [, | DI Dul?¢%. The second term is bounded below

by —C [ ¢|D}Dul||D}ul.
Now, the RHS is bounded above by

/ Al D" Dulc? + / 1|,
%% %%

Note that .
D = / Uy, (T + they,) dt.
0

So it follows that [, [DyD;"u|¢? < [|DpDul¢?. 1t follows that
2
1Dk + [ 1ricipiul <2 172+ [ 1DEDupe e [ npup
w w
2
< Z/|f|2—|—€/§2|DZu]2—|—e/\DZDUFCQ.
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By using Peter Paul on the LHS bound and making ¢ << 1, we obtain the inequality
o/2 [ 10tDuc? <2/ [ 117+ e [ Dbl < 2/e [ 117+ e [ IDu

Finally, we claim that [ |D}w|* < C = w,, € L},.. We know that D!'w is bounded in

loc*

L? for all h, so it is weakly compact. Hence, DZj w — v € L2 Tt follows that

/(DZw)cp = —/wD,;hgo — —/wgpm = /kacp,

which is the weak derivative. O

15.2 Higher Regularity

Take f =0 and [ L,,(Du)v,, = 0 for all v € H}. Take w € C§°(U) and set v = —wy,.
We have

—/ZLJDZ.(Du)&E,c (wy,) dz.

so it follows that

/ Z Lpp, (D)t W, dov.
1,J

Setting % = u,, € H'. We get that Y 0, (a;j(2)0,,4) = 0 where a;; = Ly, (Du). But
the bounded coefficients don’t give a strong enough condition to prove the result.

But v € H?

locy

4 )\
Theorem 15.3

Suppose that w € HL (U), Y 0, (as;(x)0,w) = 0 weakly, and 0]£|* < 3 a;;(2)&:€; <
C|€|?. Then, there exists v > 0 such that w € C&Z(DeGiorgi—Nash, Moser). Applying
with w = @ = u,, gives that u € C7, which implies that a;; = Ly, (Du) € C°.

Finally, using Schauder estimates, we have that v € C?7.
. J
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We follow the book Grigis-Sjostraund: Microlocal Analysis for Differential Operators.

16.1 Oscillatory Integrals

We denote X C R™ as an open set and D'(X) = {u : C*(X) - C : VK CC
X, 3C, N, Vg € CF(K), [u(p)| < Csupjq<y [0%¢]}-

We wish to generalize expressions like dg(z) = (2710n [ et d¢. This is an ”oscillatory
integral” in the sense that we are integrating something that oscillates rapidly. This
means that for all ¢ € C°, §(¢) = ¢(0) = (2m)™ [ [ €™ y(z) dwdE.

We change the phase of x - £ to a function p(z,6) where z € X, € RY so that
o(z, \0) = Ap(z,0) for A > 0.

The amplitude (27)~" is generalized to a(x,#), and we try to consider which prop-
erties we need so that we can define I(a,¢) = [ a(z,0)e*? ™ df to be a distribu-
tion.

Example 16.1

Take X = R", N = n. Define P(§) to be a homogeneous polynomial satisfying
P(&) # 0 whenever ¢ # 0. For example, we could take P(£) = |{]2. Define
x € CX(R") so that x = 1 near zero. Take E(z) = (21) "x () [zn 11?(‘5()9 et de.
This doesn’t converge, but the integrand is a smooth homogeneous function of degree

—m away from zero. If we define D, = 0, /i, then

PID)EW) = 5ox(o) | S PO + [PD)aJu [ Zpea,
where [P(D), x| is the commutator.
The first term is

o (@) [ e+ (2m)mx(a) [ (-x@etae

The second term is

> CorX(2m) /(1 — &)/ P&Pet™de.

|a|>1

The first term is dy(z), and the second is compactly supported. For the last
term, for x # 0, 1/|x[*(z,0¢)e™ * = €%, The idea is that we can integrate by
parts and the O¢ derivatives will decay rapidly. Then, we can replace this term
with something that decays rapidly so that we have dy(x) + K (x) for a compactly
supported K € C°(R™). This is called a ”Parametrix” for P(D).

In our above example, ¢(x,0) = z -0 and 0§ = &, with a(z,&) = %. Our function
satisfies the estimate

[0€((1 = x)/P)| < Cafg) ™10,

41



Vishal Raman (May 10, 2023) Math 222b

16.2 General Theory: Amplitudes
Definition 16.2. S7%(X x RY) = {a € C®(X xRY) : VK € X,a € N",f € NV, 3C =
C(K,a,5) : |9%0¢a| < C{g)mrlftolely,

In our previous example, when P is a homogeneous polynomial of degree ¢, 1;,’(2(;5) €
Sid.

Remark 16.3. This only makes sense for 0 < p < 1 and 0 < § < 1. For p > 1.
Then [0%| < Oy o(€)™N. Suppose ¢ has dimension [in] and a has dimension [in]". I¢a
has dimensions [in]*~1*/. On the other hand, |0¢'al < C/(¢)™—rlel which has dimension
[in]™—Pl*l. Then k — |a] = m — p|a| so k = m — (p — 1)|a|, but since « is arbitrary, the
units of @ are any negative number.

The same analysis would work for § < 0.

o5 is a Frechet space, one that is generated by seminorms. Namely, note that
lallkaps = sup(w)(6)_m+p|5|+‘0‘|5]8§‘8§a\. Then a € 575 if and only if for all K € X,
lallk.aps < co. The space is a Frechet space if it is complete with respect to this norm.
This is also a meterizable space, with a metric defined in the obvious way.

Some properties:

o Ifm <m0 <, p>p, then ST C S;C‘:(;/.
e We define ST (X xRY) = {a € C*(X xRY): K € X,VN, EIC'](??@?CA < C{E)NY.

o 57X xRY) =) S7(X x RY). We call this the residual space.

m ~p,0

Example 16.4

Take a € C*(X x RY) and for [#] > 1, A > 0, a(z, \0) = \"a(z,0). We claim that
a € STy. If we differentiate, we have 9ga(z, \0) = X" 1?95 a(z,0).
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17 March 16th, 2021

17.1 Amplitudes of Oscillatory Integrals

We are making sense of I(a, ) = [,n a(z,0)e™? df on a distribution. We defined a
class of functions for m € R, p,d € [0,1]. SJ5(X x RY) = {a € C*(X xR") : VK €
X,aeN* e NN 3C = C(K,a,p) : ]83“(8564 < O(¢)m—rlBIHolel} These are called the
symbols of order m and type (p,d). We write S™ = ST}, which is the case where
(6) 71920 ] < Cag.

Why are these called symbols? Suppose we have P(z,0)u = >_, <., @a()Difu. We

can also write this as (2m)™" [ 37,1, aa ()6 u(y) dydE, u € §. The current
order of integration makes sense but we can also just consider the integral in d¢, which
is an oscillatory integral, whose integrand is p(z,§) is the symbol of P(z, D). Then
p € S™(X x R™), which is of type (1,0).

17.2 A Cool Example

Suppose f € C*(X x R™;[0,00)) homogeneous - f(z,\0) = Af(z,0), A > 0, |#] > 1.
Define a(z,0) = e~ /@%. Note that 0 < a < 1. This is also a smooth function.
We claim that

e = N ans(@0)(@:Pa(@f) e

|G| <|al,|3I<|8]

We can estimate the bad term (0, f)c (9 f)?e/. For this, we use Landau’s inequality:
If g€ C*(U), g >0, for all K € U, there exists C such that |[Vg(z)| < C\/g(z), z € K.

Proof. Note that 0 < g(z +y) = g(z) + Vg(x) + y + O(|y|*). This implies that
—Vyg(z) -y < g(x)+ O(Jy|?). Taking y = —eVg(x), it follows that

e[Vg(2)| < g(z) + O(¢*|Vg(2)[?),

which implies the result. O

We have that f > 0 so we have that |0, f| + |9sf] < CfY? with1 <0 <2 r¢c K.
For A > 0, note that

A L0, f (2, A0) + Dy f (x,60) < CAY2f(z, 0)Y2.
It follows by taking 6 = A6,
16|20, f (2, 0) + |02 0p f (x,0) < C(f,0)"?, || <Lz €K
Now, we estimate
(@)% @) ] < 1]1E/2) 9712 /25D,

Finally f*e~/ < k!, which is some constant, so it follows that our term is bounded by
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17.3 Topology of the Symbol Space

Proposition 17.1
Suppose {a;} is bounded in S7% and a;(z,0) — a(x,0) for all 2,6 € X x RY. Then,
a€ S)sand a; — ain S} éfora,llm > m.

Proof. We first prove a lemma.

Lemma 17.2
Suppose f € C?([—¢,€]). Then |f(0)] < 2l|FI2IF N2 + (2/€ +1/2)| fll L=, where
||gHLoo - Sup|m|§e |g|

Proof. f(x) = f(0) +zf'(0) + 2% + fo t)f"(tx) dt. We have the estimate

2
2£(0)] < 20 flloo + 51l

Dividing by z, we we have |f'(0)] < 2/z|flleo + /2||f"]|oc- Then, we take z =
min 2| FIL2/ 1L, ©) < 20 FIL 1L + 24 D1 flloos O

From the lemma,
la} — aill < Cllay — arll Ll — aillL? + Clla; — ax|o.

Hence, a Cauchy sequence in L implies Cauchy for higher symbols.

Example 17.3

Take a = 1, a;(0) = x(0/j). @;(0) — a(f) for all §. Do we have convergence of
a; = a in S°? No! because |la; — allooc = 1. This is similar to the statement C§° is
dense in LP for 1 < p < oo.

Now, [[{(0)~%(a; — a)||ec — 0 as j — oo.

Define
- 0005 (a;—a) 1 920)(a; —a)
7 gy —plBl+olal T (gym!—m (G)ym—pll+dlal

We know that 920} (a; — a) goes to 0 on compact sets, and (§)™ — 0 as 6] — oo.
Then, for all € > 0, there exists R, so that |k;| < € if |#] > R.. On the other hand, for
0| <R, x € K, |k;| <eif j > J.. These two things imply that |k;| < e for j > J.. O
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18.1 Topology of the Symbol Space, continued

Recall that we wish to define a distribution in terms of the oscillatory integral I(a, ) =
Jen u(z,0) e¥=9dh. We defined a class a € "X x RY) if for all K € X, , 3, there
exists C' so that [920) a(x,0)| < C(6)™ p'“‘”‘ﬁ'. This class is equipped with seminorms
|la|l k.o in the obvious way and they generate the topology.

Last time, we proved the following: if {a;} C S} is bounded(||aj||Ka5 < Ck.ap), for
all (z,0) € X xR", a;(x,0) — a(x,0). Then, a € S s and a; — a in S ; for m’ > m.

Proposition 18.1
For every m’ > m, S™°(X x R") is dense in S™ s in the S;’% topology.

Proof. Write x;(0) = (9 /j) where x is a bump function which is 1 on open set. Note
that 95x;(0) = 71%x(¥(6/4), which is supported in || € [4,27], so we haveO((g)~lo).
Hence, x; € S and moreover, a; := x;a € SJs uniformly: {a;} is a bounded sequence
in 5. On the other hand, a; € 57, so applymg the result from last time implies the
desired since a; — a pointwise.

[

Remark 18.2. From Poincare, we say that a ~ Z;’Ooajhj (where the RHS doesn’t

converge) if for all N, there exists C so that |a — Z B ajh?| < ChN. This is like a
Taylor’s Theorem.

4 N\

Theorem 18.3

Suppose a; € Spé, mj — —00, mo > my > .... Then, there exists a € ST such

that for every k

a— Z a; € Sp5(X X RM).
a is unique in the sense that if the equality holds for another a, then a —a € S=°.

. J
We will write a ~ 3777 a;.
Proof. Suppose we have a sequence || - ||g¢ is a sequence of seminorms defining the

topology on S (for k constant, || - || is a sequence of seminorms).

For every j, there exists b; € S~ so that ||a; — bj][,., <277 for 0,v,u < j — 1. This
is okay because ST is dense in S;?g in the topology of S™ for v < j — 1.

This implies that if we have )., a; — bj, this converges in ST’y for all k. Now,
we put a = Y a; —b; € Sy, Note that a — 37, ;a; = ijkak — Y iobr =
= jenbr + 22, a; — bj. The first term is in S™>° because it is a finite sum of things in
S7°¢. The second term is in S}y O

18.2 Phase Functions
We denote R to be RY \ {0}.
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Definition 18.4 (Non-degenerate Phase Function). A function ¢ € C®(X x RYM)
satisfying

o o(z,\0) = Ap(x,0), A > 0.
o Im(p) > 0.

o dp #0: dp =73 0p,d0;+ 3 0y, pdx; or the gradient vector is different from zero
for all x, 6.

Lemma 18.5

Suppose m + k < —N. Then, a — I(a,y) defines a continuous map between
Ts(X X RY) — Ck(X).

Proof. I(a,p) € C(X)if|a| < (0)"V"i. e. a € SJyand m < —N. When we differentiate
this k times, we get a function in S;f‘grk which would map to C(X) if m+k < —-N. O

4 )
Corollary 18.6
If a € S, this implies that I(a, ) € C*(X).
\- J
N

[

Theorem 18.7
Suppose 0 < p < 1 and 0 < 6 < 1. There exists a unique continuous map
from (J,, 575 3 a = I(a,p) € D'(X), such that for a € S7%, m < =N, I(a,p) =
[ a(x,0)e?@) do. If k € N and m—kmin(p, 1 —36) < —N, then the map a — I(a, )
is continuous as a map from S — D'*®)(X).
. J

Remark 18.8. Recall that v € D'*)(X) if for all K € X, there exists ¢ so that for all
¢ € C°(K), lu(p)| < Csupiq <k [0%p].

Proof. Uniqueness: this follows from the fact that S™> is dense in S in Sgﬁ; topology
for all m’" > m.
Existence: We sketch the proof and prove it next time.

e Use dy # 0 to find a differential operator L so that LTe® = ™.

e For a € S~, from integration by parts, I(a, p)v = [ LF(a,v)e"?dfdz, which has
stronger regularity.

O

Example 18.9

Take u(z) = [p. ()€™ dE. Then u(v) = [pu, pe(E)v(x)e™ % dude where v €
C>. Now, we construct L so that LT (e®¢) = ¢, This corresponds to ((A,d,) +
(B, 0))e'™ = et Then, we want i(A, &) +i(B,z) = 1.
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19 March 30th, 2021

19.1 Oscillatory Integrals as Distributions
We had formal expressions [y a(z, 0)e @0 dg.
o a € SM(X x RY) if and only if 9207 a = O((g)mIFle+elal),

e For a nondegenerate phase function, we have the conditions, ¢ is homogeneous of
degree 1 in 0, Im(yp) > 0, and dy # 0.

~
Lemma 19.1

If a € S5, m+k < —N, then a — I(a,¢) = [ae’ is continuous as a map from
"= CF(X).
J

4 )\
Theorem 19.2

Suppose 0 < p < 1 and 0 < § < 1. There exists a unique continuous map from
U, S 2 a = I(a,¢) € D'(X), such that for a € S75, m < —N, it coincides with
I(a,¢) = [a(z,0)e*=)df. If k € N and m — kmin(p,1 — §) < —N, then the map
a > I(a,p) is continuous as a map from S7’; — D'®(X).

\- J

Proof. We showed unlqueness last time. Namely, for all a € S7; there exists a; € S §°
such that a; — a in Sp for m’ > m so I(a;, ) are uniquely determmed by [a;e? €
C>°(X), so continuity implies the uniqueness.

For existence, we use the following lemma.

4 N\
Lemma 19.3

Suppose that ¢ is a non-degenerate phase function. Then, there exists a; € S?O,
be € Siy, ¢ € Sty such that if we define L = > a;(,0)0; + >, be(x,0)0;, + c(z,0)
so that 'L(e'?) = e'.

J

Example 19.4

L denotes the transpose of the operator when considered as a distribution. Namely,
Lv(u) = v(*Lu). For example, ‘0,, = —0,,. It is also easier to understand when
taking it for test functions through integration.

Proof. Take x € C=(RY) so that x = 1 near 0. Define ® = 3" |22 |2 +102 3|22 |2 We

have that ® is a smooth function away from 0. It is homogeneous of degree 2 in 6, which
can be understood by considering each component. This expression is nonzero away from
0. We can define the transpose

'L ZW%@ Ly 520, +x(0).

We claim that ‘L(e*) = ¢*?. Note that ¢ +— i®. The first term is in S°, the second is
in S™'and y € S7>® c S~ O
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We start with u € C2°(X). First, take a € S™°. Then, I(a, ) € C*(X), so we have

:// a(z, 0)u(x)e ™ dhdx
RN
/ / e'?) dfdx
RN
:// L*(aw)e™ df da
x Jr¥

Now, suppose that a € SJ; for p > 0 and 6 < 1. Then, L*(au) € Sm hmin(p,1-0)
which means that for p < 1, 6 > 1, we gain decay. This gives a contmuous map
(a,u) = ST x CX(X).

Then, supg gy |LF(au)(@)=m+kmintel=0 < O|al|,x > jaj<k SUP [0%ul. This implies
that if a € S7% and k is such that m — kmin(p,1 — ) < —N, we can define

(Ir(a,¢),u) = /ei‘ka(au) dfdx < Cyp i Z sup |0%ul.
lor| <k

To define I(a, ) for a € S™ we need to show that if m — k' min(p,1 — §) < —N, then
Ix(a,¢) = Iis(a,p). We can prove this similarly to the uniqueness argument, since we
have a sequence a; — a in S™ for m’ > m and I (a;, ) = Iy (aj, ») = I(a, p). O

19.2 Some Remarks
e I(a,p) = lim. o [ €@ a(z,0)x(ef) df. This follows from the density of a. — a
in ST,
e Suppose V =Y a;dy, + > b0y, + ¢, a; € S°, by,c € ST Then, [['V(e¥)au =
[[ €V (au), with the understanding that these are oscillatory integrals.

e We can use the above remark to prove things like smoothness of oscillatory integrals
away from points. For example, take (2m)™" [ df = §y(x). We can take

V= % € S° and it follows that f e“’*"9 df = 0 away from 0.
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20.1 Oscillatory Integrals, continued

Recall that |J,, S} 3 a — I(a,p) € D'(X). We showed that for a € S™°, we had
I(a, ) = [a(z,0)e*™) d) € C=(X), with the assumption that ¢ is a non-degenerate
phase function.

We mentioned last time that if we have [[*L(e"?)audfdx = [[ e?L(au) dfdx for any
u € CP(X) where L =Y a;0p, + > b0y + ¢, a; € S°, b, € 571 ce ST

Definition 20.1. Given a phase function ¢, define C, = {(x,0) : dgpp = 0}.

If we take dy(x), ¢ = = cdotf, then C, = {(0,0) : § € R"}.

Lemma 20.2

Suppose a € 57%, 0 < p, 0 < 1, a = 0 in a conic neighborhood Cy,. Then
I(a,p) € C*(X).

Definition 20.3. A conic neighborhood of 6, € RY is a set 6 satisfying |% — |§—§M <€
for some e.

Proof. Claim: there exists L = Y~ a;0p,+c, a; € S°, ¢ € S~ such that 'L(e"?) = (1-b)e",
b € SY with supp b Nsupp a = 0.

Namely, choose b, which is homogeneous of degree 0, |¢| > 1 in a conic neighborhood
of C, and b = 0 on the support of a. We can simply take b(z,0), § € S¥~! so that b= 1
near C, N SV~ If supp b is close enough to C,, this implies the disjoint supports by
the assumption that a = 0 on the conic neighborhood of C,.

Then, we construct ‘L = (1 — b)ﬁ((pg, Op). This is fine because b = 1 on the set

where g vanishes. We also know that (1 — b)0%a = 0%a and 9*bd°a = 0. This implies
that I(a,) = I(L*a, o) for all k where we have L(au) = (La)u. Furthermore, note that
LFa € §m—Fkmin(p1-9) g5 we can make this arbitrarily small for large k, which implies
that I(a,p) € C™(X) for all m.

O

Theorem 20.4
sing supp I(a, @) C 7(C,) where 7 : X x RN = X, n(z,0) = x.

Remark 20.5. Recall that for v € D'(X), singsupp u = {z : 3U = nbhd(x),aly €
C> ()},

Proof. Suppose zy & m(C,). Then, there exists ¢(z) such that ¢(zg) = 1, supp ¢ N
7(C,) = O(this exists because C,, is closed, so its projection is closed). Then ¢I(a, ) =
I(va, ¢). Now, supp ¢a N C, = (. Now, we apply the lemma. O

Some examples

e For f € C*(X), Im(f) > 0 and f(z) = 0 implies that df(x) # O(this implies
that {z; f(z) = 0} is a C* hypersurface). Define u(z) = [;° /@7 dr. Strictly
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speaking, this should be [;° x(7)e’ @7 dr + [ (1 — x(7))e/®7 dr, which is now
I(1 =X, f(z)7) € S°.
Note that [;* e'/@)+io7 dr = m converges to u(z) € D'(X). It follows that
u(z) =4i(f(z))""t and Cy, = {(x,7) : f(x) = 0}.

e We wish to solve (92 — A)u = 0, uli—o = f, Quli=o = 0, f € S’(R™). Then,

u(t,z) = (2m)"1/2 [[ >, elley fjE|f‘tf( ) dydé. We can check this is a solution to

the wave equatlon
Define U(t, z,y) [ 1330, elemwEEildl ¢ € D(R x R™), since we can check

directly that gpi(t x y f) is a phase function. Note that C,, = {|z —y| = t},
which gives the light cone.

20.2 Fourier Integral Operators and Pseudodifferential Operators

Suppose that p € C°(X x Y x RY), X € R* Y C R™ is a phase function in all variables.
Namely, X x Y is the "old X” and a € SJ5(X x Y x RY), p >0, § < 1. We obtain
K(z,y) = [a(z,y,0)e?@¥9)d) € D'(X x V). K defines A : C=(Y) — D'(X) via
u e CX(Y), c e CX(X), and (Au,v) := (K,v ® u), where v ® u(z,y) = v(x)u(y) €
Cr(X xY).

Formally, we write Au(z) = [[ a(z,y,0)e*@¥Du(y) dydd which is understood as an
oscillatory integral when palred with v. ThlS is called the Fourier Integral Operator.

For 6 e R", X =Y C R", p(z,y,0) = (x — y) - 6, we have a Pseudodifferential
Operator.

Suppose we have a differential operator P(z, D) =} ,<,, @a(2)Dg, a — a € C*(X).

We can write
Pua) = 2n) " [ [ S aule)euty) dyds.
Then, a(z,§) = > aaé™ € STH(X x R™).

[
Theorem 20.6
Suppose A is an FIO, we have the following;:

o If for every x € X, (y,60) — ¢(x,y,0) is a phase function, then A : C*(Y) —
C>(X).

o If for every y € Y, (2,0) — @(z,y,0) is a phase function, then a : £'(Y) —
D'(X).
- J
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21.1 Operators on Oscillatory Integrals

Take X CR™, Y CR™, a € SP5(X x Y x RY), ¢ = ¢(z,y,6) a non-degenerate phase
function. Assumlng p>0,0 < 1, this gives a distribution K = I(a,¢) € D'(X x Y).
Furthermore, this defines an continuous operator A : C*(Y) — D'(X) given for u €

Co(Y), v e C(X) by
(Au,v) = (K,u® v)

where u ®@ v = u(z)v(y) € C°(X x Y). These are called Fourier Integral Operators.
o Ki(t,z,y)= (2m)™" [e'Cr vl for t € R, 2,y € R™.

e For X =Y, o(x,y,&) = (x—y,§), this gives the Pseudo-differential Operators.

Remark 21.1. The map a — I(a,9) € D'(X x Y) is continuous, so that for u,v €
Co(W),W € X x Y,

(Kuguv)|<C Y sup|oFd) (uv)|.
la|<N,|BI<N

[
Theorem 21.2
Suppose A is an FIO, we have the following:

o Ifforeveryz € X, (y,0) — ¢(z,y,0) is a non-degenerate phase function(d, gy #
0), then A: C*(Y) — C>*(X).

o If for everyy € Y, (2,0) — p(z,y,0) is a non-degenerate phase function(d, g #
0), then a : &'(Y) — D'(X).
. J

Example 21.3

For a pseudo-differential operator, we have ¢ = (x —y, &) and (y,§) — (z —y, ) and
(x,€) = (x — y, &) are non-degenerate.

Proof. Take ® = |d,p|>+6]?|dge|?, which is nonzero for X x Y xRN, This is homogeneous
of degree 2. Let y be the usual bump function and set

1 —
L= X (0y0.0,) + 10700, 80) + x

Then, L = (A,9,) + (B,0y) + cfor A€ S7', Be 5% ce S~ C S~. We showed
that for operators of this form, we can integrate by parts. Namely,

(Au,v) :/ e"?v(x) LF (au) dedyds.

Then, Lk € Sm=kmin(1=9) Tt follows that Au = [ e LF(au)dydf € C=(X).
For the second part, note that for any A : C°(Y) — D'(X), we define ‘A : C°(X) —
DY) by ("Av,u) = (Au,v). If A is defined using K4 € D'(X x Y), this implies that *A
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is defined by Ki4(y,z) = Ka(x,y). This means that if K4 = I(a, ), then K, = I(a, )
where a(y,z,0) = a(x,y,0) and ¢(y,z,0) = ¢(x,y,0). But now, the condition that
(x,0) — p(z,y,0) is non-degenerate implies that Kty : C°(X) — C*(Y). It follows that
A E(Y) =D (X). Forue&'(Y), veCxX(X), we define (Au,v) = (*Av, u).

[l

21.2 Method of Stationary Phase
We defined C, = {(z,0) : @9 = 0}. We proved that singsupp I(a,¢) C 7(C,) where

7(x,0) = z. One could ask, when do we have equality? To do this, we need to ”evaluate”

our oscillatory integrals. This is the Method of Stationary Phase.
Define

I(\) = /ei)“p(x)a(a:) dz,
for a € C°(R), p € C*(R,R). We could also take

ng:/kkwwamdm

The study of the first is the stationary phase method and the study of the second is the
steepest descent method.

21.3 Steepest Descent

Recall from lecture 1, we were stuck on the integral fOQW e~ 2l 0?0 49 as ¢ — 0. The
Method of Steepest Descent will give us the asymptotic expansion of this.

For a € C’;’O, 1 has a unique non-degenerate minimum.

[ e @q(x) de = e M@ ((2r M) (30)) "V 2a(xo) + A2+ boA"1/272 4 ). This
means that for all N, there exists C' such that

MVW o) dw—e 2000 (X (20)) T 2 a(wo) b AT 4o AT )| < Ce
If we take xy € C2°(R), x with support close to xy,

| [ @)ao) do] < N0

By Taylor’s Formula, 1(x) = 1/2(x — x¢)*1(x), where v¥(x¢) = 1" (x). Then, take

y = y(x) = (z — 20) (Y1 ()2 for x near zg. Since y'(x0) # 0, we can write x = z(y), for
y near 0. Finally, o(z(y)) = y?/2, so we have

/G_W(”C)X(z)a(:p) dx = /e_l/QAbe(y) dy
where b(y) = x(z(y))a(x(y))|dz/dy|. We know that b(0) = a(z)/(¥"(20))"/?. We are

reduced to studying
/ e 2 b (y) dy.

Then, [wv = (27)~ fuv Plancherel’s formula. Then ,u = b(y), v = e~/ The
Fourier transform of e~ /A% = /\\/127; —€2/2X 50 it follows that

/ e () dy = (270) 7 / e b(E) d.
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We wish to consider this as A — co. By expanding the Taylor series of the exponential
term, we have

er Y [ e B = er I [

Recall that [ £2b(¢) = (27) D25b(0).
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22 April 8th, 2021

22.1 Steepest Descent

Recall for Steepest Descent, we had
IO = [ ()N Pafa) do + O N0
for y € C° a smooth bump function near xy. We then wrote 1(z) = ¥ (xg) + 1/2y(x)?,
which gives a nice function x — y(z) with y(x¢) = 0 and y'(z¢) # 0.
Applying this, we had J(\) = e () [b(y)e "2 dy, b € C° near 0 and b(xg) =
a(zo)

(W(z0))1/2"
Then, via Plancherel, we obtained

J(\) = (2m) "1/ / b(&)e € dy VA

which has a finite expansion
(2m)~1/2 / Z 1/ (—=1/2)\)k¢** de )V X+ C / )E2N = 1/2009)% ge 13/,
Then, note that fg”@(g) = 21 D2"b(0), so we obtain
N-1 -
(2m)'2 VXY /RN 2m) TF02b(0) + Oy AN T2 |(D2b) .
0
Then, we estimate

102NBy < e([[0°"2b]| o + 0*Vb]| ) < C sup  |9°].

|| <2N+2

2

J(\) = e M@0 (97)1/2 1/k'(27r) *027b(0) + O(A N2,

=
Il

Putting this together, If v has a unique non-degenerate minimum at z, ¥'(zq) = 0,
V" (xg) >0, a € CP(R), we gave
0

/a(aj)e—)\w(w) dr = 6_/\¢(IO)(27T/¢”($0))1/21/\/X(a(lo)-i-)\_lal-i-- . '+)\_N_1CLN_1+O()\_N_1/2))_

22.2 Stirling’s Formula
Recall the Gamma function

['(s) = /OOO e "todt/t.

We wish to examine this as s — o0o.
We rewrite this as

efttsdt/t — eftJrs logtdt/t — esloggvefs(gv lng)dﬂf/I.

Then, T'(s) = s* [;° e~ s(@—loge) dx . The phase 9(z) = © — log z. Note that it achieves a
minimum at x=1and ¢"(z) > 0.
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Take x to be a bump function at 1. Then,

1
/ (1 . X(x))e—s(x—logx)dx/x o 0(6_(8(1+a))),
0

where the a is the point on the phase where y removes the support. Similarly,

/ (1 — x(x))e @82 gy /2 = O(e*0FY),
1
We see that

F(S) = Ss[/ X(x)efS(xflogz) dx/a: + O(efsmin(1+a,1+b))].

The first term is exactly suitable for the steepest descent method.
Namely, ¢ =z — logx, a(x) = 1/z. ¢'(1) =0, ¥"(1) =1, a(1) = 1, so we obtain the
estimate
I(s) = s*e*[V2ms V2 4 a5 + ... 4+ O(s V2.

The leading term is exactly Stirling:

I'(s) = V2rs* 275 (1 + O(1/5s)).
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23.1 Stationary Phase
Take I(\) = [ e**@a(z)dx, ¢ € C°(R;R), a € CZ(R).

4 )
Lemma 23.1
Suppose |¢'(z)| > 0 on supp (a). Then for all K € X, N, for all a € C*(K), there
exists C' such that
[I(\)] < C sup |[0%alAY.
lal<N
- J

Proof. Define 'L = ﬁw’ - 0,. Note that 1/\ L(e~) = e=*¢. It follows that

I\ = /\_N/ei’\“’(LNa)(a:) dx < |supp a|]AVsup |LVa| < CyA™N sup |0%l.

o <N

I Remark 23.2. The converse is open for higher dimensions.

This means that the contributions to the integral come from stationary points.

4 )
Theorem 23.3 (Stationary Phase(dim 1))

Suppose X = (a, ), a € C*(X) and ¢ has a unique critical point in (a, ),
¢'(x0) = 0, ¢"(20) # 0. Then

V2r

" (o) 12

where ag = a(z) and [Sy(A)| < A7V2 N sup,on i [0%al.
- J

I(\) e 229" @) )3~ 2(q0 4 A a + A 2an + -+ AP Van )+ Sa(N),

Proof. First, note that I(\) = [ x(z)a(z)e™*® dx+O(A=°), where X is a smooth bump
function near zo. We make a change of variables ¢(z) = ¢(z0) + €5 (y(x))?, where
(o) = 0, 3/ (x0) — " (z0) /2 0, € — sgn("(an)). Assume (o) = .

Hence, I(\) = [ b(y)e? /2 dy+O(A=>), where b(y) = a(z(y))x(x(y))|dz/dy|. Leaving
out the O(A\~), we have I(\) = (¢*¥*/2 p) = %(ei/QEAyQ,A).

. ; 2 . .
Now, we calculate the Fourier transform of € /2. We can write this as

lim 6ie/2>\y26—1/26y26—iy§ dy = lim e—1/2(6—2’6)\)(y—i—if/(é—ie)\))2+§2/(2(6+ie/\)) dy
§—0+ 6—0+

_ V2T ee-an)
0 — 1€
V2 im/4e

— e/,
VA

We obtain the Fourier Transform /2w /\ef™/4e=1/2¢%/A,
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I Remark 23.4. There are probably sign errors above.

T L€ —iet? 7
I\ = %%e [ e P06 de. |
Expanding the Taylor series of the exponential term, we have

e [k

(—ie/20E(E) dg + AN12 / O(e™)|b(E)| de.

Then, note that 1/27 [ £25b(¢) dé = (D?Fb)(0), so we obtain

l 2671'/4 Z )\ 26/2 D2kb(0) + Afol/QHé&QNZHLla

k<N

and note that the last term is bounded by C'supy<yy., |0b|(a Sobolev type estimate).
This exactly gives our desired expansion. O]

23.2 Stationary Phase in Higher Dimensions

To proceed, we need an analog of ¢'(xg) = 0,¢" (zg) # 0 = p(z) = ©(xo) + €/2(y(x))>.
For this, we use the Morse Lemma.

4 )
Theorem 23.5 (Morse Lemma)

Suppose ¢ € C*(R™;R) and Dy(zy) = 0 and D?*p(z) is non-degenerate. Then,
there exists a transformation y from a neighborhood of x( to a neighborhood of x

such that po x ! (y) = p(zo) +1/2(yi + - +y2 —y2, — - —y2) where (r,n—7) is
the signature of D?p(x);ii. e. 7 is the number of positive eigenvalues of D?*p(xy).

.

Proof. Without loss of generality, assume that zo = 0, ¢(x9) = 0. Then, we can
diagonalize D?¢(0) = 'UAU where we order the eigenvalues A, ..., A\, > 0, \pyq,..., A\, <
0. Then, we can write p(z) = 1/2(g0”(0)x,m> + O(|z]?) = 1/2(AU=z,Uzx) + O(|Ux|?),
where 7 = |A|"2Ux. But this is just 1/2(551 B2 =32, — = B2 4+ O(|T]P).

We write & as . We can write p(x) = [)'(1—t 82( (tx)) dt(this follows from integration
by parts). We can write this as 1/2 Z ¢k ()28 where gjp(x) = 2 fo 835 o7 =L ({x)dt,
4k = Gkj-

Then, ¢;x(0) = LQ“’—(O) so defining a matrix Q(z) = (gjx(x)), we have p(z) =

Oz xy

1/2(Q(x)x, z), Q0) = D*(xo).
We would like to find k(z) = A(zx)x where A(0) = I, z — A(z) € C*. Then,

(r, Qw)z) = (A(z)z, QO)A(z)w) = (K (), QO)K(2)) = (y, Q(0)y) where y = K(x).
This is the same as (z, Q(x)x) = (z,'A(z)Q(0)A(z)z). So, we need Q(x) = AT (2)Q(0)A(z)

with A(0) = I. To handle this, we use the implicit function theorem.

Theorem 23.6 (Implicit Function Theorem)

Given a function F : RM — RY and F(X,) = Yy, € RY, Xy, € RM. We solve
F(X(Y)) =Y, X(Yy) =Y, we need dF(Xj) : RM — R™ to be surjective(or F is a
smooth submersion).

We will use F' : M(R,nxn) — Sym(R,n) where F'(A) = ATQ(0)A. Then, F(A+H) =
F(A)+dF4(H)+o(||H||). We have ATQ(0)A+ HTQ(0)A+ ATQ(0)H + HTQ(0)H. O

o7
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24 April 18th, 2021

24.1 Morse Lemma

Recall the Morse Lemma:

4 )
Theorem 24.1 (Morse Lemma)

Suppose ¢ € C*(R™;R) and Dy(zy) = 0 and D?*p(z) is non-degenerate. Then,
there exists a transformation y from a neighborhood of xy to a neighborhood of x
such that po x ! (y) = p(zo) +1/2(yi + - +y2 —y2, — - —y2) where (r,n—7) is
the signature of D?p(x);ii. e. 7 is the number of positive eigenvalues of D?*p(xy).

.

Proof. Last time, we reduced the problem to finding = — A(zx), where A(z) € R"*"
and A(0) = I,. Then, if we take Q(z) = AT(2)Q(0)A(z), it follows that x
Q(z) € Symm(n), the group of symmetric real-valued matrices, where Q(0) = @ is
non-degenerate.

To do this, define F' : R™*™ — Symm(n) with F(A) = ATQA. We wish to find a right
inverse H such that G(Q) =1 and F oG = I,,. Then, A(x) = G(Q(z)) would satisfy our
conditions.

Note that F(A+ H) = F(A) + dFa(H) + o(|[H|]*). Namely,

(A+ H)TQA+ H)=ATQA + ATQH + H'QA + H'QH.

The first term is F(A), the next two give dF4(H) and the last is o||H||*). Now,
dF4 : R™"™ — Symm(n) is given by H — QH + H'Q = S, note that we can find a right
inverse Q15/2. Tt follows that we can apply the implicit function theorem. n

24.2 Higher Dimensional Method of Stationary Phase

As before, take I(\) = [e**@a(z)dz for a € CX(X), where we assume ¢ has a
non-degenerate Crltlcal point. We can write this as

= /e“‘p(x)x(x)a(x) dx +O(A") supp x € Be(zo)

= /e_"’\/z@”’”b(aj) dr +O(A\"0), b(x) =a(K *(z)) ‘

by applying the Morse Lemma. If we take the Fourier Transform of the Gaussian and
apply the Blancherel Formula, we obtain

—n/2 7Tn/2 R
:(2)\7r)”|c(1itég|l/2 s / S U/KIQTIE €)/(220) b(E) + AN / O((€)*) (&) de

k<N
A™ n/2<2ﬂ-> ’Lﬂ' 4sgn Q 1D$7D > —N-—n/2
- ~ (2n)n ’detQ’1/2 s Z _ (—) bl (0) + A 25, (N),
k<N
where

Sy <O, < Y 0%l

|a|<2N+n+1

o8
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Example 24.2

Take (z,y) € R"xR", Q = (_O] _OI) Note that Q! = Q. Then, 1/2(Q(z,v), (z,y))
—z -y = w? — v? where w = w—j%’, v = w—\;iy The corresponds to a matrix é _0[ ,

which has a signature of 0. This is the nicest case for the stationary phase method.
Then, 5-(Q *Dy.y, Dyy) = + >0 Dy, D, which gives (A\/2m)" [ e ™ Yu(z, y) dady

Ty
for u € C°(R™ x R™). From the method of stationary phase, we have

N—-1
11
> 75k (0 1/iDs, Dy, Fu(0,0) + S,A7Y,
o

IS <C D 18205(0: - 9y)llso

|a+B|<2n+1

24.3 General Schrodinger Operators

We find a fundamental solution to

LD, DY)E = 5(t)60(x).

(i0, + 2(

For Q = —21I, we have the free Schrodinger Equation.
We require () to be a symmetric, non-degenerate matrix. If we take a spacial fourier
transform, we obtain

So(t) = (i0; + (Q71E,€) /2) By = idy(e VX EI R,
a first-order ODE. Solving this, we obtain
E,(t,§) = QT H (1) /i,

where H is the heaviside function. Finally, if we take an inverse spacial fourier transform

we obtain 12
— | det Q| eiﬂ'/4 sgn Q6<Qm,x>/(2it).
i(2tm)n/?
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25 April 20th, 2021

25.1 Pseudodifferential Operators

Definition 25.1. An operator A is a pseudodifferential operator of order < m, A €
s (X)(p >0, 6 < 1), if there exists a € S%(X x X x R") such that for u € Cg°(X),

Au(x) = (2m)™" // e (2, y, )u(y) dydé
as an oscillatory integral.

o Ifwetake A =37 _, anDy, thena(z,y,&) =3, <, aa(z){" is the corresponding
symbol.

o (I—A):S8R") — S(R") has an inverse (I — A)~!: S(R") — S(R") € \Ifig, by
taking a(r,y,§) = (1 +[¢]*)~".

o P(Eu)=u, ue&(R"), with P=0, — A+ 1. Then, F € ‘I/;/IZVO(R"H) with the
(dreaded) HW symbol a = (it + |£]* + 1)1

o (i0, + A)(Eu) = u, u € E'(R""). We showed that a = e H(t), which is not in
any symbol class.

Recall from before,
Auly) = [ Kulag)uly)dy, Ky € DX x X),u € C2(X).

Then, Au € D'(X), (Au,v) = (K, u®v), v € CX(X). If Ky = I(a,p), then (z,0) —
o(z,y,0) takes C*(X) — C>°(X) and (y,0) — ¢(z,y,0) takes £'(X) — D'(X).

Recall the singular support of K4 is contained in the set {(z,y) : 39, ¢s(x,y,0) = 0}.
Note that if A € U7, then A: C°(X) — C*(X) and A : £'(X) — D'(X). In this case,
the singular support is contained in A(X x X) = {(z,z) : z € X}.

Proposition 25.2 (Semilocality)
If A:&(X)— D'(X), then singsupp K4 C singsupp u.

Proof. Take xy € X \ singsupp u. Choose ¢ € C°(X) with ¢ = 1 near xg, 1) = 1 near
sing supp u and supp ¢ Nsupp ¢ = (. Then, Au = A(1 — )u + AvYu = Apu + g with
g € C®(X). Tt follows that pAu = pAYu + g, g € CX(X). Since ¢ is 1 near x,
it suffices to show that pAu € C*, since it would follows z( cannot be in the singular
support of Au.

Define Ky,uay(z,y) = ©(2)Ka(z,y)1(y). Since supp K,ay N A(X x X) = ), we have
K,y € O, which implies that ¢ AYu € C*°, which implies that p Au € C*. m

Definition 25.3. A is a smoothing operator if A takes £'(X) — C*(Y) and C*(Y) —
D'(X), or equivalently K4 € C*(X x Y). We define U= to be the class of smooth
operators.
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Proposition 25.4

A € ¥~°(X) if and only if a € S™°(X x X x R™) satisfying the pseudodifferential
operator definition.

Proof. For the forward direction, K4(z,y) = C [ '@ 9¢q(z,y,€)dé € C®(X x X). O
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