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§1 August 27th, 2020

§1.1 Introduction

Consider a random experiment - this involves a state space Ω and some ”probability”
on it. The outcome of an experiment would be ω ∈ Ω.

Example 1.1 (Fair Coin Toss)

Ω = {0, 1}, P (0) = 1/2, P (1) = 1/2 models a fair coin toss. The outcomes are
ω ∈ Ω, ω = 0 or ω = 1.

Example 1.2 (Continuous State Space)

Ω = [0, 1], X is the outcome of a random experiment. Suppose X is uniformly
distributed random variable. P (X ∈ [0, 1

2 ]) = 1/2. Take A = Q ∩ [0, 1]. P (x ∈
A) = 0, since A has no ”volume”. Similarly, taking A1 = R \ Q ∩ [0, 1], then
P (x ∈ A1) = 1− P (x ∈ A) = 1. Finally, take E ⊂ [0, 1]. P (x ∈ E) =”volume” of E.

The issue: we need to define some notion of volume. Some properties we would like are
the following:

• Translation Invariance

• Countable Additivity: A1, A2, . . . disjoint with A =
⋃
Ai, then P (A) =

∑∞
i=1 P (Ai).

§1.2 Nonmeasurable Sets

Take I = [−1, 2], and define x ∼ y iff x−y ∈ Q. [Exercise: check that ∼ is an equivalence
relation.] This decomposes I into equivalence classes I/ ∼. Note that the equivalence
classes are countable, since any class is x+A,A ⊂ Q.

For each equivalence class B, pick xB ∈ B ∩ [0, 1]. Define E = {xB} over all the
equivalence classes. Note that xB is a representative of B in E, so B = {xb + q : xb + q ∈
I, q ∈ Q}.

Now, consider the set [0, 1] ⊂
⋃
q∈[−1,1]E + q ⊂ [−1, 2]. Equality doesn’t hold, because

there can be B s. t. xb is close to 0. Then E + (Q∩ [−1, 1]) will only recover elements of
B near 1 and will not go up to 2.

Proposition 1.3

We claim that E + q are disjoint for different values of q.

Proof. Suppose E + q1 ∩ E + q2 6= ∅ for some q1, q2. Then, there exists x, y ∈ E such
that x+ q1 = y + q2. This implies that x− y = q2 − q1 ∈ Q, so x ∼ y, but by definition,
there is exactly one member of each equivalence class in E.

The big question: What is P (E)? Suppose P (E) > 0. Then
⋃
q∈[−1,1]E +Q ⊂ [−1, 2]

and P (E + q1) = P (E + q2) = P (E) for all q1, q2. Furthermore, by countable additivity,

1 ≥ P (
⋃

q∈[−1,1]E+q

) =
∑

q∈[−1,1]

P (E + q) =∞ · P (E).

5
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This would imply that P (E) = 0. However,

[0, 1] ⊆
⋃

q∈[−1,1]

E + q ⇒ P ([0, 1]) = 1/3 ≤
∑

q∈[−1,1]

P (E + q) = 0.

Hence, P (E) cannot be defined.
The issue is the step where we pick xB, since we need to pick xB from uncountably

many points, which assumes the axiom of choice. It was proved by Robert M. Solovay
that all models of set theory excluding the axiom of choice have the property that all
sets are Lebesgue measurable.

Our goal is thus to come up with a general framework where things can be consistently
defined for a large class of sets.

§1.3 Measure Theory Beginnings

For the definitions, we take Ω to be the state space.

Definition 1.4 (Sigma-Algebra). Suppose Σ follows the following properties:

1. ∅ ∈ Σ

2. A ∈ Σ⇒ Ac ∈ Σ

3. A1, A2, · · · ∈ Σ, then
⋃
Ai ∈ Σ

Note that 2 and 3 imply 1 since (A ∪Ac)c = ∅. Then Σ is a sigma-algebra.

Note that we also have countable intersections(this is an easy exercise).

6
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§2 September 1st, 2020

Last time:

• We discussed the notation of a Σ-algebra, a reasonable class of sets on which we
will define measures.

• Properties: ∅ ∈ A, A ∈ A, Ac ∈ A,
⋃
Ai ∈ A.

§2.1 Measures

We are working in a space (Ω,Σ).

Definition 2.1 (Measure). A measure is a function µ : Σ→ [0,∞] with the following
properties:

• µ(∅) = 0

• ”Countable Additivity”: µ(
⋃
A)i) =

∑
µ(Ai) for disjoint Ai ∈ Σ.

Example 2.2

If Ω is finite, 1, 2, . . . , n, Σ = 2Ω, then all possible measures on (Ω,Σ) are given by
fixing a1, a2, . . . , an ∈ [0,∞] and µ(A) =

∑
i∈A ai.

Properties of measures:

• Monotonicity: A ⊂ B, then µ(A) ≤ µ(B).

Proof. B = A ∪ (B \A) and B \A ∈ Σ, so

µ(B) = µ(A) + µ(B \A) ≥ µ(A).

• Countable Subadditivity: A ⊆
⋃∞
i=1Bi, then µ(A) ≤

∑
µ(Bi).

Proof. We disjointify the Bi: Define C1 = B1, Ci = Bi \Bi−1. Then

µ(A) ≤ µ(
⋃
Ci) =

∑
µ(Ci) ≤

∑
µ(Bi).

• : Continuity from below: If Ai ↑ A, then µ(Ai) ↑ µ(A).

Proof. A = A1 ∪ (A2 \A1) ∪ (A3 \A2) . . . , so by countable additivity

µ(A) =

∞∑
i=1

µ(Ci) = lim
n→∞

n∑
i=1

µ(Ci) = lim
n→∞

µ(An).

• Continuity from above, if Ai ↓ A, and µ(A1) <∞, then µ(Ai)→ µ(A)

Proof. We need the condition µ(Ai) <∞. Take Ai = [i,∞) as a counterexample if
we don’t have that condition.

Define A1 \Ai = Bi, so Bi ↑ A1 \A. Then, use the continuity from below.

7
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§2.2 Sigma algebras

Fact 2.3. For any A ⊂ 2Ω, define

Σ(A) =
⋂
A∈Σ

Σ.

Then, Σ(A) is a sigma-algebra.

Note that Σ(A) is the smallest sigma-algebra containing A. For this reason, we call it
the sigma-algebra generated by A.

Example 2.4

Take X,Y ⊂ 2Ω. We want to prove Σ(X) = Σ(Y ). It suffices to show X ⊆ Σ(Y )
and Y ⊆ Σ(X).

Definition 2.5 (Borel Sigma-Algebra). (Ω,U), a topological space with a family of open
sets. The Borel Sigma-Algebra is B = Σ(U).

Example 2.6

For Ω = R, B is the sigma algebra generated by open sets in R. We also have B is
the sigma-algebra generated by open intervals in R, which follows from the fact that
any open set can be written as a countable union of open intervals. Furthermore,

Σ((a, b) : a, b ∈ Q,R) = Σ([a, b] : a, b ∈ Q,R),

since [a, b] =
⋂

(a− 1/n, b+ 1/n) and (a, b) =
⋃

[a+ 1/n, b− 1/n].

§2.3 Uniform Measure on the Borel Sets

We will attempt to define the uniform measure on Borel sets of R. Broadly, we do it as
follows:

1. Define it on a semi-algebra containing the intervals.

2. Extend the definition to an algebra.

3. Extend it to a sigma-algebra.

Definition 2.7 (Semi-algebra). Σ ⊂ 2Ω is a semi-algebra if

• A1, A2 ∈ Σ implies A1 ∩A2 ∈ Σ

• A1 ∈ Σ implies that Ac1 =
⋃n
i=1Bi for Bi ∈ Σ.

Note: The set of intervals {(a, b) : a, b ∈ R} is not a semi-algebra. If (a, b)c = [b,∞)
which is not finitely coverable by disjoint open sets. Similarly, {[a, b] : a, b ∈ R} is not a
semi-algebra.

Claim: Σ = {(a, b] : a, b ∈ R} is a semi-algebra. [This is left as an exercise].
Now, µ((a, b]) = b− a. The proof that µ is countable additive on Σ. If A =

⋃∞
i=1Bi,

Bi disjoint, A,Bi ∈ Σ, then µ(A) =
∑∞

i=1 µ(Bi).

8
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Proof. We first show that µ(A) ≥
∑∞

i=1 µ(Bi). This is an easy exercise, show µ(A) ≥∑n
i=1 µ(Bi), and we pass to the limit.
It suffices to show µ(A) ≤

∑∞
i=1 µ(Bi). We do this by exploiting compactness.

Let A = (a, b] ⊃ [a+ 1/n, b] = A;, take Bi = (ci, d] ⊂ ci, d+ ε
2i

= B′i. Note that

A′ ⊂
∞⋃
i=1

B′i,

so there exists a finite subcover A′ ⊂
⋃k
j=1B

′
ij
. It is easy to show that b− (a+ 1/n) ≤∑k

j=1(d′ij − c
′
ij

). But note that

k∑
j=1

(d′ij − c
′
ij ) ≤

k∑
j=1

dij − cij + ε,

which implies that

µ(A)− 1/n ≤
∞∑
i=1

µ(Bi) + ε⇒ µ(A) ≤
∞∑
i=1

µ(Bi).

Definition 2.8. A is an algebra if

• ∅ ∈ A

• A1 ∈ A implies Ac ∈ A

• A1, . . . , An ∈ A, then
⋃n
i=1Ai ∈ A.

The algebra generated by a semi-algebra is given by taking all possible disjoint finite
unions.

Claim: Σa = {
⋃n
i=1Ai} for disjoint Ai semialgebras is an algebra.

Proof. We show A,B ∈ Σa ⇒ A ∪ B ∈ Σa and Ac ∈ Σa. Note that A =
⋃n
i=1Ci, B =⋃k

j=1Dj , so

A ∩B =
n⋃
i=1

k⋃
j=1

Ci ∩Dj ,

and Ci ∩Dj are disjoint. Then Ci, Dj ∈ Σ implies Ci ∩Dj ∈ Σ.

Then, if A =
⋃k
i=1Ci, then Ac =

⋂k
i=1C

c
i , and Cci =

⋃`
j=1Ej ∈ Σa.

We extend µ to an algebra by µ(A) =
∑k

i=1 µ(Ci), where A =
⋃
Ci in the semi-algebra.

9
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§3 September 3rd, 2020

Recall that we are aiming to define the uniform measure on (R,B).
Last time:

1. We defined a premeasure on a semi-algebra, which Σsemi = {(a, b] : −∞ ≤ a ≤
b ≤ ∞}, µ((a, b]) = b− a was countably additive.

2. Extend µ to an algebra Σa = disjoint union of elements of Σsemi.

3. For A =
⋃k
i=1Ci ∈ Σa,

µ(A) =
k∑
i=1

µ(Ci).

§3.1 Uniform Measure on the Borel Sets

We first need show show µ is well defined. Suppose A =
⋃l
i=1Ci,

⋃`
j=1Bj for Ci, Bi ∈

Σsemi. We want

µ(A) =
k∑
i=1

µ(Ci) =
∑̀
j=1

µ(Bj).

Note that Ci =
⋃`
j=1(Ci ∩Bj), which are all disjoint. Similarly, Bj =

⋃k
i=1(Bj ∩ Ci),

disjoint. Thus, from the finite additivity of Σsemi, we have

k∑
i=1

µ(Ci) =

k∑
i=1

∑̀
j=1

µ(Ci ∩Bk) =
∑̀
j=1

µ(Bj),

as desired.
We will next show that µ is finitely additive additive. First, if we have A1, A2, . . . , An ∈

Σa disjoint, we show µ (
⋃
Ai) =

∑
µ(Ai).

Note that each Ai =
⋃mi
j=1C

i
j , which are disjoint, so

µ
(⋃

Ai

)
= µ

⋃
i

⋃
j

Cij

 =
n∑
i=1

mi∑
j=1

µ(Cij) =
n∑
i=1

µ(Ai).

Next, we show µ is monotonic. For A,B ∈ Σa, A ⊆ B, B = A ∪ (B \A), so

µ(B) = µ(A) + µ(B \A) ≥ µ(A).

We show countably additivity: Let A =
⋃∞
i=1 µ(Ai). We need to show µ(A) =∑∞

i=1 µ(Ai).
We first show µ(A) ≥

∑∞
i=1 µ(Ai). It suffices to show µ(A) ≥

∑n
i=1 µ(Ai). Since⋃n

i=1Ai ⊆ A, monotonicity gives µ (
⋃n
i=1Ai) ≤ µ(A).

Next, we show µ(A) ≤
∑∞

i=1 µ(Ai). First A =
⋃k
j=1Cj for Cj ∈ Σsemi, Ai =

⋃mi
` Ci`

for Cj` ∈ Σsemi.
Thus,

µ(A) =
k∑
j=1

µ(Cj).

10
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Hence, it suffices to show µ(Cj) ≤
∑∞

i=1 µ(Cj ∩Ai), since

µ(A) =
∑

µ(Cj) ≤
k∑
j=1

∞∑
i=1

µ(Cj ∩Ai) =

∞∑
i=1

k∑
j=1

µ(Cj ∩Ai).

Note that Cj =
⋃∞
i=1

⋃mi
` Cj ∩ Ci`, and we finish by using countable additivity for

Σsemi.
It suffices extend to Σ(Σa) which is the sigma-algebra generated by Σa.

Theorem 1 (Caratheodory’s Extension Theorem)

We have the following:

• Given a countably additive measure µ on an algebra Σa, it can be extended to
a measure on Σ(Σa).

• If µ is σ-finite on Σa, the extension is unique.

A measure µ is σ-finite on Σa if there exists A1 ⊆ A2 ⊆ · · · ∈ Σa so that
⋃
Ai = Ω,

µ(Ai) ≤ ∞ for all i.

Proof. For example, consider Σsemi = {(a, b] ∩ Q}. Then Σ = 2Q. The cardinality of
every element in Σsemi is either ∞ or 0. Define µ(A) =∞ if |A| =∞, else 0. One can
check µ is a measure on Σsemi. We can also take the counting measure ν. This agrees on
Σsemi, but not on Σ. We can check that ν is not sigma-finite.

We now show uniqueness, given σ-finiteness. For simplicity, assume µ(Ω) < ∞. If
we have two measures µ1, µ2 on Σ with µ1(A) = µ2(A) for all A ∈ Σa, then we show
µ1(B) = µ2(B) for all B ∈ Σ.

A general strategy to show some property is true for a sigma-algebra is to show that
the sets satisfying those properties must be closed under some natural operations and
that any such family of sets must contain a sigma-algebra.

Theorem 2 (π - λ)

A class of sets P is said to be a π-system if A,B ∈ P implies A ∩ B ∈ P . A class
of sets G is said to be a λ-system if Ω ∈ G, A ⊂ B,A,B ∈ G, then B \A ∈ G, and
Ai ∈ G , Ai ↑ A → A ∈ G. If P is a π system contained in G, a λ-system, then
Σ(P ) ⊂ G.

Note that a semi-algebra is a π system. It suffices to consider the set C = {A : µ1(A) =
µ2(A)}. We know that Σsemi ⊂ C . To show Σ ⊂ C , it suffices to show that C is a
λ-system.

Note that a sigma-algebra is a λ-system, so given any π-system P , Σ(P ) is the smallest
λ-system containing P .

We have already verified Σa ⊂ C . Furthermore, Ω ∈ C because Ω is an algebra. Finally,
suppose we have A ⊂ B , A,B ∈ C . We need B \A ∈ C . µ1(A) = µ2(A), µ1(B) = µ2(B)
and µ(Ω) <∞. Since µ1(Ω) = µ(Ω) = µ2(Ω) <∞,

µ1(B \A) = µ1(B)− µ1(A) = µ2(B)− µ2(A) = µ2(B \A).

For Ai ↑ A, by continuity from below, µ1(Ai)→ µ1(A), µ2(Ai)→ µ2(A), so A ∈ C .

11
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An easy exercise is to modify the above prove to include the sigma-finite case. The proof
of the π − λ theorem involves some set theory.

We’ll sketch the existence proof. Suppose we have µ on Σa. For example, take B ⊂ R.
How do we define µ(B)? We could try to approximate B by the union of intervals.

Define the outer measure, µ∗(B) = inf
∑∞

i=1 µ(Ai) defined over covers of B. Some
properties are µ∗(B1) ≤ µ∗(B2) if B1 ⊆ B2, µ∗(∅) = 0, and µ∗(

⋃
Ci) ≤

∑∞
i=1 µ∗(Ci).

Define A = {A : µ∗(E) = µ∗(E∩A) +µ∗(E∩AC)∀E}. A is a sigma algebra containing
Σa and µ∗ is a measure when restricted to A.

12
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§4 September 8th, 2020

Last time, we completed the construction of the uniform measure on the Borel sets.

§4.1 The Outer Measure

On an algebra Σa, let Σσ
a be the elements formed by taking countable unions of elements

of Σa. Let Σσδ
a contain countable intersections of elements of Σσ

a . Notice that from the
definition of an outer measure, for any set B, there exists a set B′ ∈ Σσδ

a such that

B ⊂ B′, µ∗(B) = µ∗(B
′).

This implies that µ∗(B
′ \B) = 0 and for every N such that µ∗(N) = 0, we can check

that N belongs to A. Remark: The construction defines the measure µ∗ on sets of the
form A ∪B, where A is a Borel set and µ∗(B) = 0. It is easy to check that µ∗(B) = 0
implies that there exists a Borel set C such that µ∗(C) = 0 and B ⊆ C. Thus, we call it
the completion of Borel sets. This is a strictly larger sigma-algebra than the Borel sets,
which follows from comparing cardinalities. Namely, the cardinality of the Borel sets is
2N0 . Observe the Lebesgue sigma algebra contains 2Cantor Set = 2C .

Meausres on the real line are characterized by distribution functions, which are non-
decreasing right continuous functions F . One can adopt the same strategy to define
a measure on the real line by defining µ((a, b]) = F (b) − F (a). Similarly, given µ on
(R,B(R)), we can check that F (b) = µ((−∞, b]) is a distribution function.

We can also consider (Rd, B(Rd)), the Borel sets on Rd. We claim that this is

Σ((a1, b1)× (a2, b2)× · · · × (ad, bd)) = Σ(B1, B2, . . . , Bd : Bi ∈ B(R)).

For distribution functions on Rd, consider the lexigraphical partial order. We would
like them to satisfy,

• F (x) is non-decreasing

• F (x) is right continuous: If xi ↓ x, then F (xi)→ F (x).

• F (x)→ 0 as x ↓ −∞, F (x)→ 1 as x→∞.

The properties above are not actually enough to define a measure. (Consider the semibox
in R2).

However, for any F such that F (A) ≥ 0 for any A ∈ Σsemi, the strategy to build a
measure on B(Rd) from Σsemi → Σa → B(Rd) works.

§4.2 Functions Between Measure Spaces

Suppose we have two measure spaces (Ω1,Σ1), (Ω2,Σ2) and a function f : Ω1 → Ω2.

Definition 4.1 (Measurable Function). f is said to be measurable if f−1(A2) ∈ Σ1

for all A ∈ Σ2. If (Ω2,Σ2) = (R, B(R)), then f will be called a random variable.

Proposition 4.2

If Σ2 = Σ(A), then to check f is measurable, it suffices to check f−1(B) ∈ Σ1 for all
B ∈ A.

13
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Proof.
Σ′ = {B : f−1(B) ∈ Σ1}

is a sigma-algebra: If B ∈ Σ′, then Bc ∈ Σ′, since f−1(Bc) = (f−1(B))c. Ω ∈ Σ′ since
f−1(Ω2) = Ω1. It is easy to check countable unions. Σ′ is a sigma algebra containing A,
so Σ′ contains Σ(A).

Fact 4.3. If we have f : (Ω1,Σ1, µ1) → (Ω2,Σ2), f induces a measure µ2 on (Ω2,Σ2)
where µ2(B) = µ(f−1(B)) for all B ∈ Σ2.

Some properties:

• If we have f : (Ω1,Σ1) → (Ω2,Σ2), g : (Ω2,Σ2) → (Ω3,Σ3), then h = g ◦ f is
measurable.

• If X1, X2 are two random variables, then (X1, X2) is a measurable function into
(R2, B(R2)).

We know that B(R2) = Σ(I1 × I2) for intervals. Finally,

(X1, X2)−1(I1 × I2) = X−1
1 (I1) ∩X−1

2 (I2)

, so(X1, X2)−1(I1 × I2) is measurable.

• Suppose F is a continuous function from (Ω1, B(Ω1))→ (Ω2, B(Ω2)). Then F is
measurable, since the preimage of open sets is open.

• if X1, X2, . . . , Xd is a random variable, then X1 +X2 + · · ·+Xd is a random variable.

• If fn are random variables and fn → f pointwise. Then, f is measurable.

Proof. Consider the set {f > x} =
⋃∞
n=1

⋂∞
m=n{fm > x} is measurable. Then

(x,∞)x∈R is a generating set.

• X : (Ω1,Σ1, µ1) → (R,B(R)) induces a measure µ on (R,B(R)), where µ(B) =
µ1(X−1(B)) for all B ∈ B(R). It also induces a distribution function F , which is
nondecreasing, right continuous, and F (x) ↑ 1 and x→∞, F (x) ↓ 0 as x→ −∞.

Given a distribution function, is there a random variable? Given a distribution
function, we can construct a measure on R by the Caratheodory Extension Theorem. Let
I : (R,B(R), µ) → (R,B(R)). We could also take X : ([0, 1], B([0, 1], µ) → (R,B(R)),
where µ is uniform. Suppose F is continuous and strictly monotone. We want X to induce
the distribution F , so it suffices to show X−1(∞, y) = [0, F (y)]. If we define X(F (y)) = y,,
we get the above, but that’s not always well defined. For general distributions, one can
come up with various definitions of an ”inverse” which induces the desired properties.
One particular choice is

w ∈ (0, 1), X(ω) = sup{y : F (y) < ω}.

It is an exercise to check that {ω : X(ω) < x} = {ω : ω ≤ F (x)}, which implies that
X is measureable.

14
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§5 September 10th, 2020

§5.1 Integration

We work in (Ω,Σ, µ) a sigma-finite measure space. Often, we take it to be a probability
measure. The goal is to define a notion of integration for measurable functions and the
behavior of integration with limits. Consider a function f : Ω→ R measurable with the
Borel Sigma-algebra.

Our strategy is as follows:

1. Consider simple functions.

2. Extend to bounded functions.

3. Extend to general functions.

§5.2 Simple Functions

Definition 5.1 (Simple Function). Consider f = 1E , where µ(E) < ∞, an indicator
function. A simple function is a linear combination of indicator functions,

f =

k∑
i=1

ci1Ai , µ(Ai) <∞,

where Ai are disjoint.
We’ll define the integral of a simple function as∫

fdµ =

k∑
i=1

ciµ(Ai).

First, note that any f =
∑k

i=1 di1Bi can be represented as
∑k

i=1 ci1Ai , where they are
disjoint. We verify that our definition is well defined. Suppose

f =
k∑
i=1

ci1Ai =
m∑
j=1

ej1Fj .

Then, observe that for i, j such that Ai ∩ Fj 6= ∅, then ci = ej . So, we have f =∑
i,j di,j1Ai∩Fj , and we can check that dij = ci = ej . Thus,

k∑
i=1

ciµ(Ai) =
∑
i,j

dijµ(Ai ∩ Fj) =
m∑
j=1

ejµ(Fj).

Some properties:

• If f ≥ 0 then
∫
f ≥ 0.

•
∫
af = a

∫
f .

•
∫

(f + g) =
∫
f +

∫
g.

• If g ≤ f then
∫
g ≤

∫
f .

• if g = f ,
∫
g =

∫
f .

• |
∫
f | ≤

∫
|f |.

15
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§5.3 Bounded Functions

Suppose |f | ≤M and f vanishes outside E and µ(E) <∞.
We can approximate from above or below:

sup

∫
g≤f

g ≤ inf

∫
h≥f

h

To prove equality, it suffices to show that there exists g, h such that
∫
h −

∫
g ≤ ε. It

suffices to construct h such that h− f < ε and f − g < ε. Then
∫
h−

∫
g ≤ 2εµ(E).

Note that the range of f is [−M,M ], so we can discretize the interval into smaller
intervals I1, . . . , Ik of size ε.

Then, define A1 = f−1(I1) ∩ E, and f−1(Ij) ∩ E = Aj . Then.

h =
∑

((j + 1)ε−M)1Aj , g =
∑

jε−M)1Aj .

Thus,
∫
f = sup

∫
g = inf

∫
h.

Observe that the new definition agrees with the old definition when f is simple.
As an exercise, we’ll verify

∫
f + g =

∫
f +

∫
g. Take Suppose

∫
h1 ≥

∫
f ≥

∫
g1 with∫

h1 − g1 < ε, and
∫
h2 ≥

∫
g ≥

∫
g2 with

∫
h2 − g2 < ε.

Then
h1 + h2 ≥ f + g ≥ g1 + g2,

and ∫
h1 +

∫
h2 <

∫
g1 + g2 + 2ε =

∫
g1 +

∫
g2 + 2ε.

§5.4 General Functions

Assume f ≥ 0. Note that we can no longer approximate from above, so we approximate
from below: ∫

f = sup{
∫
h, h ≤ f, bounded }.

Clearly, the definition agrees with the old one for bounded functions with finite support.
As an exercise, we’ll prove that

∫
f+g =

∫
f+
∫
g. If we have a bounded h1 ≤ f, h2 ≤ g,

then h1 + h2 ≤ f + g, which implies that
∫
h1 + h2 =

∫
h1 +

∫
h2 ≤

∫
f + g. and

sup
∫
h1 + sup

∫
h2 =

∫
f +

∫
g, so

∫
f +

∫
g ≤

∫
f + g.

Lemma 5.2

Suppose En ↑ Ω, µ(En) <∞. Now, consider (f ∧n)1En , where f ∧n is the minimum
of f, n. Then, the function is bounded and has finite support. Note that (f ∧ n)1En .
We claim that ∫

(f ∧ n)1En ↑
∫
f.

Proof. It is clear that

lim

∫
(f ∧ n)1En ≤

∫
f,

since hn = (f∧n)1En is contained in the set of bounded functions for which the supremum
is
∫
f .

If suffices to show that lim
∫

(f ∧n)1En ≥
∫
f . Take h bounded such that

∫
f <

∫
g+ ε.

There is a set E such that g ≤M on E and g is 0 on Ec.

16
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g ≤ f , so for any n ≥M , hn ≥ g on En ∩ E. We claim that∫
hn ≥

∫
g −Mµ(E \ En).

Then En ↑ Ω, so µ(E \ En)→ 0.

Now, we conclude the original proof. Note that
∫
f + g = lim

∫
((f + g) ∧ n)1En , so∫

((f + g) ∧ n)1En ≤
∫

(f ∧ n)1En +

∫
(g ∧ n)1En .

Taking limits gives the desired result.

§5.5 Arbitrary Measurable Functions

Define
∫
f only when

∫
|f | <∞. Define

f = f+ − f−,

where f+ = f ∨ 0, f− = f ∧ 0.
Then ∫

f =

∫
f+ −

∫
f−.

Lemma 5.3

If f1, f2 nonnegative and f = f1 − f2, then∫
f =

∫
f1 −

∫
f2.

Proof. f = f+ − f− = f1 − f2, so

f+ + f2 = f1 + f−,

then ∫
f+ +

∫
f2 =

∫
f1 +

∫
f−,

so ∫
f =

∫
f+ −

∫
f− =

∫
f1 −

∫
f2.
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§6 September 15th, 2020

§6.1 Properties of Integrals with Limits

We assume for simplicity that our measure space (Ω,Σ, µ) is finite. Last time, we
defined integrals for measurable functions starting with indicators, to simple functions,
to non-negative functions, and finally to general functions.

Observe that if f is 0 almost surely, then
∫
f = 0. Suppose {fn} is a set of measurable

functions and fn → f pointwise almost everywhere, then lim fn is measurable. In other
words, there exists a set E such that µ(E) = 0 and fn converges on Ec. Define f to be 0
on E and lim fn on Ec. Note that f is measurable. Suppose fn ”converge” to f . When
can one expect

∫
fn to converge to

∫
f?

Definition 6.1 (Convergence in Measure). We say fn → f in measure if given ε > 0,

lim
n→∞

µ (|fn − f | > ε) = 0

We denote this by fn
µ−→ f .

Exercise 6.2. If µ(Ω) <∞, then fn → f almost everywhere implies that fn
µ−→ f .

Example 6.3

Suppose fn = 1[−n,n] over R. Then fn → f = 1R, but µ(|fn − f | > ε) =∞.
Recall continuity of measure from below: If An ↑ A then µ(An) ↑ µ(A), but if

µ(A) =∞, then µ(A)− µ(An) =∞ for all n. This doesn’t happen for µ(Ω) <∞.

Example 6.4

If fn
µ−→ f , then does fn → f almost everywhere? No: Take Ω = [0, 1], f = 0 and

f1 = 1[0,1/n], f2 = 1[1/n,2/n], ..., fn = 1[n−1/n,1], fn+1 = 1[0,1/(n+1)], ...
There is always some interval where fn = 1, so it does not converge pointwise to 0.

Example 6.5

If fn
µ−→ f , then does

∫
fn →

∫
f? No. Take fn = 1

n1[0,n].

Theorem 3 (Bounded Convergence Theorem)

Suppose µ is finite and fn are supposed on E such that µ(E) <∞.

If |fn| < M and fn
µ−→ f , then

∫
fn →

∫
f .

Proof. f must be 0 almost everywhere outside E. Define F = {|fn − f | < ε}. Note that∣∣∣∣∫
E
fn −

∫
E
f

∣∣∣∣ ≤ ∫
F∩E
|fn − f |+

∫
E∩F c

|fn − f |

≤ εµ(E) + 2Mµ(F c ∩ E)
ε→0−−→ 0.
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Theorem 4 (Fatou’s Lemma)

If fn ≥ 0 then

lim inf
n→∞

∫
fndµ ≥

∫ (
lim inf
n→∞

fn

)
dµ.

Proof. Let gn(x) = infm≥n fm(x). Then gn(x) ↑ g = lim inf fn.
We know that fn ≥ gn. This implies that

∫
fn ≥

∫
gn. We have that

lim inf

∫
fn ≥ lim inf

∫
gn = lim

∫
gn.

Hence, It suffices to show that

lim

∫
gn ≥

∫
g.

Recall that gn ↑ g so lim gn = g. Consider gn ∧m, a bounded function. Note that
gn ∧m ↑ g ∧m, so by the Bounded Convergence Theorem,∫

(gn ∧m) ↑
∫

(g ∧m).

Furthermore, we have ∫
gn ≥

∫
(gn ∧m),

so

lim

∫
gn ≥ lim

∫
(gn ∧m) ↑

∫
(g ∧m) ↑

∫
g,

where the last inequality comes from approximation by bounded functions of finite
support.

Theorem 5 (Monotone Convergence Theorem)

If fn ≥ 0 and fn ↑ f , then
∫
fn ↑

∫
f .

Proof. Note that
∫
f ≥ limn→∞

∫
fn since

∫
f ≥

∫
fn. Then

∫
f ≤ limn→

∫
fn by Fatou’s

lemma.

Theorem 6 (Dominated Convergence Theorem)

If |fn| ≤ g where
∫
g ≤ ∞ and fn → f pointwise, then∫

fn →
∫
f.

Proof. Note that fn + g ≥ 0, and fn + g → f + g so by Fatou’s lemma,

lim inf
n→∞

∫
fn + g ≥

∫
f + gdµ,

which implies that lim infn→∞
∫
fn ≥

∫
f.

Then, applying the result to g − fn, we have

lim inf
n→∞

−fn ≥
∫
−f ⇒ lim sup

n→∞
fn ≤

∫
f,

which implies that lim
∫
fn =

∫
f , as desired.
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§6.2 Expected Value

We have been discussing measurable functions, but these can easily be translated into
the language of random variables. Namely, if X is a random variable and

∫
|X| < ∞,

then
∫
X = E(X), the expectation of X.

• Xn ≥ 0, then Xn ↑ X → E(Xn)→ E(X).

• |Xn| < Y , Xn → X, E(Y ) <∞, then E(Xn)→ E(X).

§6.3 Change of measure for Integrals

We have a random measurable map

X : (Ω1,Σ1, µ1)→ (Ω2,Σ2)
f−→ (R, B(R)).

Then f ◦X : (Ω1,Σ1)→ (R, B(R)), and if
∫
|f ◦X| <∞, then X induces a measure µ2

on (Ω2,Σ2) with µ2(A) = µ1(X−1(A)). Hence, we can discuss∫
Ω2

fdµ2.

Theorem 7 (Change of Measure)∫
Ω1

f ◦Xdµ1 =

∫
Ω2

fdµ2.

Proof. Let f = 1E for E ∈ Σ2.∫
Ω2

fdµ2 = µ2(E) = µ1(X−1(E)).

Then f ◦X = 1(X−1(E)), so ∫
f ◦X = µ1(X−1(E)).

For simple functions, we can use linearity of integrals for the result. For nonnegative
functions, we construct a monotone sequence of functions which increase to f . One
possible choice is

fn =
b2nfc

2n
∧ n.

We know that fn ↑ f and
∫

Ω1
fn ◦X =

∫
Ω2
fn, and fn ◦X ↑ f ◦X, so by the monotone

convergence theorem, ∫
Ω1

fn ◦X →
∫

Ω1

f ◦X,

and ∫
Ω2

fn →
∫

Ω2

f,

so it follows that
∫

Ω1
f ◦X =

∫
Ω2
f, as desired.
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§6.4 Product Measures

We will relate high dimensional integrals with low dimensional ones with the notion of
Product Measures.

Let (Ω1,Σ1, µ1), (Ω2,Σ2, µ2) be measure spaces. Consider (Ω1×Ω2,Σ(Σ1×Σ2)). Note
that Σ1×Σ2 is a semialgebra. From here, we construct the product measure.

Theorem 8

There exists a unique measure on Σp = Σ1 × Σ2, µ such that

µ(A×B) = µ1(A)µ2(B)

for all A×B ∈ Σp. We will call this the product measure.

Proof. Given a countable additive sigma-finite measure on a semi-algebra, it admits a
unique extension to the generated sigma-algebra by Caratheodory’s extension theorem.
To prove the existence and uniqueness, it suffices to check countable additivity on Σ1×Σ2.

If we have A×B =
⋃
Ai ×Bi, we want

µ(A×B) = µ1(A)µ2(B) =
∑

µ1(Ai)µ2(Bi).

Our strategy is to product to one dimension less. Fix x ∈ A. Note that B = {y :
(x, y) ∈ A × B}. But A × B =

⋃
Ai × Bi. Consider all Ai’s that contain x. Then, the

corresponding Bi’s form a disjoint partition of B. We know that µ2(B) =
∑

x∈Ai µ2(Bi)
for all x ∈ A, so in particular

1Aµ2(B) =
∑

1Aµ2(Bi).

We claim that the two functions are pointwise same on Ω1. Then, we integrate (uses
MCT) with respect to µ1 to get

µ1(A)µ2(B) = lim
n→∞

n∑
i=1

µ1(Ai)µ2(Bi).
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§7 September 17th, 2020

§7.1 Product Measures, Continued

We have a semialgebra Σ1 × Σ2 and we denote Σ1×2 = Σ(Σ1 × Σ2). Let E ∈ Σ1×2.

Lemma 7.1

For any X ∈ Ω1, the set

Ex = {y ∈ Σ2 : (x, y) ∈ E}

is measurable.

Proof. If E = E1 × E2, then either Ex = ∅ or Ex = E2. We show that the set of E with
this property forms a sigma-algebra. If E ∈ A, then (Ec)x = (Ex)c so Ec ∈ A.

If E1, E2, · · · ∈ A, then ( ∞⋃
i=1

Ei

)
x

=
∞⋃
i=1

(Ei)x.

Hence, A is a sigma-algebra containing Σ1 × Σ2, so A = Σ1×2.

Theorem 9

For any E ∈ Σ1×2,

µ1 × µ2(E) = µ(E) =

∫
Ω1

µ2(Ex)dµ1,

and µ2(Ex) is a measurable function from Ω1 → R.

Proof. The result is clear for rectangles. If E1, E2 ∈ A, then µ2(Ex) = µ2(E1x) +
µ2(E2x) − µ((E1 ∩ E2)x) We use the π − λ theorem. It suffices to show that A is a
λ-system and we have that A ⊃ Σ1 × Σ2, which is a π-system.

It is clear that Ω1 × Ω2 ∈ A. We claim that if En ∈ A, then En ↑ E implies
E ∈ A. Note that (En)x ↑ Ex for all x then µ2(Enx) ↑ µ2(Ex) and if we define
µ2(Enx) = fn(x), then fn(x) ↑ Ex is measurable, as desired. Finally, we show that if
E1 ⊃ E2 and E1, E2 ∈ A, then E1 \ E2 ∈ A. This is clear since (E1 \ E2)x = E1x \ E2x

so µ((E1 \E2)x) = µ2(E1x)−µ2(E2x) is measurable as the difference of finite measurable
functions.

The same argument shows that A is a λ-system if we define A to be all E so that both
conclusions of the theorem hold.

22



Vishal Raman (December 1, 2020) Math 218a

Theorem 10 (Fubini)

Let f ≥ 0 or ‖f‖1 <∞. Then

1. For all x, f(x, ·) is measurable on Σ2.

2.
∫
f(x, ·) is measurable on Σ1.

3.
∫ ∫

f(x, ·) =
∫
f .

Proof. We have verified this for f = 1E . Suppose f ≥ 0. By linearity of integrals and
the fact that the sum of measurable functions is measurable, the claim holds for simple
functions. For general f ≥ 0, take a sequence of simple functions fn ↑ f .

Then, ∫ (∫
fn(x, ·)dµ2

)
dµ1 =

∫
fnd(µ1 × µ2),

so the result follows from the monotone convergence theorem.
For general f ∈ L1(R), f = f+ − f−, so we use the above to conclude.

Example 7.2 (Not-integrable Function)

Let Ω1 = Ω2 = N. Suppose µ1, µ2 are counting measures. Let f(m,m) = 1,
f(m+ 1,m) = −1 and f(m,n) = 0. Then∑

m

∑
n

f(m,n) = 1,
∑
n

∑
m

f(m,n) = 0.

The failure is that f 6∈ `1.

Example 7.3 (Not σ-finite)

Let Ω1 = Ω2 = (0, 1). Let µ1 be the uniform measure and µ2 be the counting measure.
Let E = {(x, x) : x ∈ (0, 1)}. Then

∫ ∫
µ2(Ex)dµ1 = 1, but

∫ ∫
µ1(Ey)dµ2 = 0.

§7.2 Independence

Definition 7.4 (Naive Independence). If X1, X2 are random variables, then X1 and X2

are independent if

P (X1 ∈ E,X2 ∈ F ) = P (X1 ∈ E)P (X2 ∈ F ).

We will generalize this notion.

Definition 7.5 (Independence). For a (Ω,Σ, µ), if Σ1,Σ2, . . . ,Σk ⊂ Σ are said to
be mutually independent if for any subset {i1, i2, . . . , i`} ⊂ {1, . . . , k} and sets
Ai1 , Ai2 , . . . , Ai` , Aij ∈ Σij

µ(Ai1 ∩ · · · ∩Ai`) =
∏

µ(Aij ).

This is the same as the condition

µ(A1 ∩A2 ∩ . . . Ak) =

k∏
i=1

µ(Ai),
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since we take some of the Ai = Ω.

Definition 7.6 (Independent Random Variables). X1, . . . , Xk are mutually independent
of {Σ(Xi)} are mutually independent.

Theorem 11

Suppose A1, A2, · · · ⊂ Σ are mutually independent π-systems. Then Σ(Ai) are also
mutually independent.

Proof. Wlog, we can assume Ω ∈ Ai for all i. Fix B2 ∈ A2, . . . , B` ∈ A`. For B1 ∈ Σ(A1),
define the two measures µ′, µ′′ as

µ′(B1) = µ(B1 ∩B2 ∩ · · · ∩B`),

µ′′(B1) = µ(B1)
∏̀
i=2

µ(Bi).

We claim that µ′ = µ′′. Observe that µ′ and µ′′ agree on A1 by hypothesis, so the
claim holds by the uniqueness part of the Caratheodory Extension theorem on Σ(A1).

Σ(A1), A2, . . . , A` are mutually independent π systems. We iterate to get that Σ(Ai)
are mutually independent.

Example 7.7 (Pairwise Independent 6= Mutually Independent)

Take X1, X2, X3 ∈ {0, 1}, Pick (X1, X2, X3) uniformly from all triples (x1, x2, x3)
such that x1 + x2 + x3 = 0 (mod 2). Note that P (Xi = 1) = P (Xi = 0) = 1/2. It
is clear that (Xi, Xj) are independent, but (X1, X2, X3) are not independent since
P ((X1, X2, X3) = (1, 1, 1)) = 0 6= (1/2)3.

Theorem 12 (Kolmogorov’s 0-1 Law)

Suppose X1, X2, . . . are independent random variables. Consider

Tn = σ(Xn, Xn+1, . . . ),

and let
T = ∩∞n=1Tn

(this is known as a tail-sigma algebra). Then T is a µ-trivial sigma algebra: for all
E ∈ T , µ(E) = 0 or 1.

Proof. The idea is E is independent ofX1, . . . , Xn−1, so E is independent of σ(X1), σ(X2), . . . , σ(Xn−1).
Hence E is independent of

⋂n−1
i=1 σ(Xi), so E is independent of

⋂∞
i=1 σ(Xi), so E is inde-

pendent of Σ(X1, X2, . . . ). But E ∈ T ⊂ Σ(X1, . . . ), so P (E ∩E) = P (E)P (E) = P (E),
so P (E) = 0 or 1.

Claim: If Aij for j = 1, . . . ,mi such that Aij are all π-systems containing Ω are
mutually independent, then Σ(Ai1, Ai2, . . . , Aimi) are also mutually independent. To
prove this, let Ai = {B1 ∩B2 ∩ · · · ∩Bmi : Bj ∈ Aij}.

We know that Σ(X1), . . . are independent π systems,so Σ(X1, . . . , Xn) and Σ(Xn+1, . . . )
are independent. Hence E is independent of

⋂∞
i=1 Σ(Xi), so E is independent of T , which

gives the result.
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Theorem 13 (Kolmogorov Extension)

Take (Rn, B(Rn), µn) a consistent family of measures on Rn: for A ∈ B(Rn)

µn+1(A× R) = µn(A).

Then there exists a measure µ on (RN, B(RN)) such that µ agrees with µn on
Rn × R× R× . . . .
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§8 September 22nd, 2020

Last time, we discussed product measures, independent random variables/sigma algebras,
and how to construct infinitely many independent random variables. We also proved the
0− 1 law for tail-sigma algebras.

If we have (Ω,Σ,P) and random variables X1, X2, . . . , Tn = Σ(Xn, Xn+1, . . . ) and
T∞ =

⋂
Tn is a sigma algebra that is P-trivial.

Any event that does not depend on any finite set of Xi’s is in the tail-sigma algebra.
For example, let Y = lim supXi and E = {Y < t}. Note that Y does not depend on
finitely many Xi’s. Another example is Sn =

∑n
i=1 xi and we define Y = lim sup Sn

n .

When does Sn
n have a limit?

§8.1 Law of Large Numbers

We have X1, X2, . . . independent random variables. What is the asymptotic behavior of
Sn
n ?

Suppose X1, X2, . . . have E(X2
i ) < C, E(XiXj) = 0 and E(Xi) = 0. Then,

Sn
n

P−→ 0⇔ P
(
|Sn
n
| > ε

)
→ 0.

Proof. We first note Markov’s Inequality: Suppose X is a nonnegative random variable.
For any positive c,

P (X > c) ≤ E(X)

c
.

Furthermore, note that {∣∣∣∣Snn
∣∣∣∣ > ε

}
=

{(
Sn
n

)2

> ε2

}
.

By Markov’s Inequality,

P((
Sn
n

)2 > ε2) ≤ 1

n2ε2
E(S2

n),

and finally,

E(Sn)2 = E((X1 + . . . Xn)2) =
∑

EX2
i +

∑
E(XiXj) ≤ nC

so
1

n2ε2
E(S2

n) ≤ nC

n2ε2
=

C

nε2
→ 0.

Corollary 8.1

IfX1, X2, . . . are independent with the same distribution and E(Xi) = µ E(X2
i ) = σ2,

then
Sn
n

P−→ µ.

Proof. Note that E(XiXj) = E(Xi)E(Xj) = 0 by Fubini’s theorem. Hence we apply the
previous theorem to X̄i = Xi − µ.

26



Vishal Raman (December 1, 2020) Math 218a

Fact 8.2. Chebyshev’s Inequality: For any RV X,

P (|X| > t) ≤ E(X2)

t2
.

Example 8.3 (Polynomial Approximation)

Task: Given f : [0, 1]→ R continuous, and ε > 0, find a polynomial fn(x) such that

|fn(x)− f(x)| < ε

for all x ∈ [0, 1].
Let

fn(x) =

n∑
m=0

(
n

m

)
xm(1− x)n−mf

(m
n

)
.

We expect fn(x) ≈ f(x) by the Binomial Theorem. Precisely,

fn(x) = E

(
f

(
Sn
n

))
where Sn ∼ Bin(n, x) with Sn =

∑n
i=1Xi for Xi ∼ Ber(x). It suffices to show that

Sn
n ≈ x.

By the Law of Large Numbers,

P

(∣∣∣∣Snn − x
∣∣∣∣ > ε

)
→ 0.

Since f is continuous on [0, 1], it is uniformly continuous, so that given δ, there
exists ε such that for all x, y with |x− y| < ε, |f(x)− f(y)| < δ. If we let the event
above be Ac, then,

E(f(Sn/n)) = E(f(Sn/n)1A) + E(f(Sn/n)1Ac)

= f(x)P (A) + E(f(Sn/n)− f(x))1A) + E(f(Sn/n))1Ac

≤ f(x)P (A) + δP (A) + sup
x∈[0,1]

f(x)P (Ac) → f(x).

Note that

P (Ac) ≤ Var(Sn)

n2ε2
≤ 1

nε2

since Var(Xi) ≤ 1 for Xi ∈ [0, 1].
Hence, for any x ∈ [0, 1], fn(x)→ f(x) uniformly as n→∞.

Now, our goal is to prove the law of Large Numbers without the second moment
assumption. Namely, for X1, X2, . . . iid with E|Xi| <∞, EXi = 0,

Sn
n

P−→ 0.

Our strategy is truncation.

Definition 8.4. For any random variable X, we will consider the random variable from
XM = X1|X|<M . Note that we have E(X2

M ) <∞ for all M even if E(X2) =∞.
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Theorem 14

Suppose that for each n there exists a constant bn such that

n∑
i=1

P (|Xni | > bn)→ 0

and
n∑
i=1

E(Xni)
2

b2n
→ 0.

Then
n∑
i=1

Xni − E(Xni)

bn
→ 0.

Proof. We first prove that

Y =
n∑
i=1

Xni − E(Xni)

bn
→ 0.

This follows from Chebyshev, since E(Y ) = 0 and

Var(Y ) ≤
n∑
i=1

E(Xni
2
)

b2n
.

Then
∑n

i=1 P (|Xni > bn|)→ 0 so if Xni < bn, Xni = Xni .
Let B = {Xni 6= Xni : i ∈ {1, . . . , n}}. Then

P (B) ≤
n∑
i=1

P (|Xni | > bn)→ 0,

so it follows that
n∑
i=1

Xni − E(Xni)

bn
→ 0.

Lemma 8.5

Suppose X1, X2, . . . are iid. Suppose that

KP (|X1| > K)→ 0.

Then ∑n
i=1Xi − nE(X11{|X1| < n})

n
→ 0

in measure.

Proof. Note that this does not imply E(X1) <∞. Form a triangular sequence from the

Xi’s and let bn = n. We show that
∑n

i=1 P (|Xi| > n)→ 0 and
∑n

i=1E(Xi
2
)→ 0.

For 2, it suffices to show

E(Xi
2
)/n→ 0.
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Note that |Xi| = |Xi|1{|Xi| < n}. Suppose X is a non-negative random variable. Note
that

E(X) ≈
∞∑
n=1

P (X > n).

Similarly,

E(X2) ≈
∞∑
n=1

nP (X > n).

Then

E(Xi
2
) ≈

n∑
K=1

KP (X1 > K).

It suffices to show that ∑n
k=1 kP (|X1| > k)

n
→ 0,

which follows from the fact that kP (|X1| > k)→ 0.

Theorem 15 (Law of Large Numbers)

If X1, X2, . . . iid and E(|X1|) <∞ and E(X1) = 0, then Sn/n→ 0 in measure.

Proof. Note that kP (|X1| > k) ≤ E(|X1|1{|X1| > k}) → 0, by the dominated conver-
gence theorem. By the lemma,

Sn
n
− E(X1)→ 0,

and note that E(X1)→ E(X1) = 0 by the dominated convergence theorem.
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§9 September 24th, 2020

§9.1 Law of Large Numbers, continued

Last time, we began discussing the Law of large numbers. Recall:

• Markov’s Inequality:

P (|X| > c) ≤ E(|X|)
c

.

• With X1, X2, . . . iid, E(Xi) = 0. When E(X2
1 ) < c,

Sn/n
P−→ 0.

• Under 1st Moment condition, we used truncation to make thinks bounded and have
second moments. We discussed triangular arrays and saw a theorem which proves
a LLN type of statement for truncated variables.

• We showed that the truncation has no limiting effect. Then, we considered∑
Xi1|Xi|<n/n→ 0,

which implied the law of large numbers.

Example 9.1

Let X1, X2, . . . be iid with Xi ≥ 0. Suppose E(X1) =∞. Then∑n
i=1Xi

n
=?

Let Yi ∼ Xi1|Xi|<M . Then S′n/n
∑n

i=1 Yi/n → E(Yi) by the weak law of large
numbers. But by nonnegativity, Sn/n > S′n/n → E(Yi), but E(Yi) can be made
arbitrarily large by choosing M very large.

For any c,

P

(
Sn
n
> c

)
→ 1,

so Sn/n→∞.
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Example 9.2

Let X = 2i with probability 1/2i for i ≥ 1. Note E(X) =∞.
Let X1, X2, . . . be iid X. What is the growth rate of Sn? One expects to see some

Xi’s take value comparable to n since P (X1 = n) = 1
n .

We will control the growth with truncation. Let αn = log n+ k(n), bn = 2αn . We
need to show that

n∑
i=1

P (Xi > bn)→ 0,

and ∑n
i=1E(X2

i 1Xi<bn)

b2n
→ 0.

Note that

P (Xi > bn) ≈ 1

bn
=

1

n2k(n)
,

so ∑
P (Xi > bn) =

1

2k(n)
→ 0.

Then,

E(X2
i 1Xi<bn) ≈

α(n)∑
i=1

22i/2i =

α(n)∑
i=1

2i ≈ 2α(n) = bn.

Then, ∑n
i=1E(X2

i 1Xi<bn)

b2n
≈ nbn

b2n
=

1

2k(n))
→ 0.

Therefore,
Sn − nE(Xi)

bn
→ 0.

Note that E(Xi) = α(n), so

Sn − n(log n+ k(n))

n2k(n)

If we choose log log n, then

Sn − n(log n+ log log n)

n log n
→ 0,

so
Sn

n log n
→ 1 =⇒ Sn = Θ(n log n).

§9.2 Almost Sure Convergence

Let X1, X2, . . . iid, E(Xi) = 0, E(X2
i ) < C.

We know that
Sn
n

P−→ 0,

but do we have
Sn
n
→ 0,

almost surely?
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Lemma 9.3 (Borel-Cantelli)

If events Ei satisfy
∑∞

i=1 P (Ei) <∞, then P (Ei infinitely often) = 0.

Example 9.4

Let ε > 0. We want

P

(∣∣∣∣Snn
∣∣∣∣ > ε, i.o.

)
= 0.

In order to apply BC, we have to show∑
P

(∣∣∣∣Snn
∣∣∣∣ > ε

)
<∞,

but ∑
P

(∣∣∣∣Snn
∣∣∣∣ > ε

)
≈ 1

ε2n
→∞.

We try to get around this by assuming a higher moment. Suppose E(X4) <∞.
Then,

E(S4
n)

n4
=
E((
∑n

i=1Xi)
4)

n4
=
nE(X4

1 ) + n2E(X2
1X

2
2 )

n4
≈ 1

n2
.

So

P

(∣∣∣∣Snn
∣∣∣∣ > ε

)
≤ 1

ε4
E((Sn/n)4) ≈ 1

ε4n2
,

which gives that ∑
P

(∣∣∣∣Snn
∣∣∣∣ > ε

)
<∞.

Can one use naive Markov to show a subsequence converges?
If we let K(n) = n2,

P (|
Sk(n)

k(n)
| > ε) ≈ 1

n2

so we can take the infinite sum and it approaches 0.
Define

D(n) = sup
k(n)≤i≤k(n+1)

|Si − Sk(n)|.

It suffices to show that
D(n)

k(n)
→ 0.

We know that

P (|Dn/k(n)| > ε) ≤
k(n+1)∑
i=k(n)

P

( |Si − Sk(n)|
k(n)

> ε

)
,

by subadditivity. By Chebyshev,

k(n+1)∑
i=k(n)

P

( |Si − Sk(n)|
k(n)

> ε

)
≤
∑ i− k(n)

k(n)2ε2
≤ (k(n+ 1)− k(n))2

2k(n)2
≈ 1

n2
,

so Dn
k(n) → 0 almost surely by BC.
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§10 September 29th, 2020

Recall from last time:

• Weak law of Large Numbers, using triangular arrays and truncation,

• The Borel-Cantelli Lemma,

• The Strong Law of Large Numbers, assuming 4th moments with Markov, and
assuming 2nd moments, we proved convergence along a subsequence and controlled
oscillations.

Fact 10.1. Xn → X in probability if and only if for any sequence of Xn, there exists a
subsequence which converges almost surely.

Today, we will prove the most general version of SLLN, under the first moment assumption.

§10.1 General Law of Large Numbers

Let E1, E2, . . . be pairwise independent events, where pi = P (Ei). Assume that
∑
Pi →

∞. We have Sn =
∑n

i=1 1Ei , and we would like to consider Sn
E(Sn) . We claim that

Sn/E(Sn)→ 1,

almost surely.

Proof. Let an = {|Sn−E(Sn)| > εE(Sn)}. We want to bound P (an). It suffices to prove
that for any ε > 0,

∑
an <∞, by the Borel-Cantelli lemma.

Note that

P (|Sn − E(Sn)| > εE(Sn)) ≤ Var(Sn)

ε2(E(Sn))2
,

and

Var(Sn) =
n∑
i=1

Var(1Ei) =
n∑
i=1

pi(1− pi) ≤ 1.

Hence, Var(Sn) ≤ E(Sn) and

an ≤
E(Sn)

ε2(E(Sn))2
=

1

ε2
1

E(Sn)
.

Denote E(Sn) = gn. Let k(n) be the least element such that gk(n) ≥ n2.
We have that

Sk(n)/gk(n) → 1,

almost surely, by applying Borel-Cantelli. It suffices to control the error between the
subsequence.

Let k(n) ≤ m ≤ k(n+ 1). We would like to show that

Sm/gm → 1.

But notice that Sk(m) ≤ Sm ≤ Sk(m+1) since indicator functions are nonnegative. So,

Sk(n)/gk(n+1) ≤ Sm/gm ≤ Sk(n+1)/gk(n) =
Sk(n+1)

gk(n+1)

gk(n+1)

gk(n)
≈
Sk(n+1)

gk(n+1)

(n+ 1)2

n2
→ 1.

We can have a similarly bound for the bottom term, and the result follows from the
squeeze theorem.
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Theorem 16 (Strong Law of Large Numbers)

Let X1, X2, . . . be iid and E|Xi| <∞, E(Xi) = 0. Then

Sn/n→ 0

almost surely.

Proof. We will prove convergence of S+
n /n and S−n /n, where S+

n =
∑n

i=1X
+
i and similarly

for the negative. Hence, we can assume without loss of generality that Xi ≥ 0. We start
by applying truncation: X̄i = Xi1|Xi|≤i.

It suffices to prove S̄n/n→ 0 almost surely. This follows from the fact that X̄i = Xi

for large enough i almost surely, since
∑
P (X̄i 6= Xi) =

∑∞
i=1 P (Xi > i) = E(Xi) <∞.

By Markov,

P

(∣∣∣∣Sn − E(S̄n)

n

∣∣∣∣ > ε

)
≈ V ar(S̄n − E(S̄n))

ε2n2
.

This will not necessarily be summable over all n, so we choose a subsequence. We will
choose k(n) = αn for a fixed α > 1.

We need to show that
∑
V ar(Sk(n))/k(n)2 <∞. Note that

V ar(Sk(n))/k(n)2 ≤
k(n)∑
i=1

EX̄i
2
/k(n)2

and

EX̄i
2 ≈

i∑
j=1

jP (X > j).

We can hence rewrite our expression as

∞∑
n=1

∑k(n)
i=1

∑i
i=1 jP (X > j)

k(n)2
≤
∞∑
j=1

∞∑
n=1

jP (X > j)

k(n)
1(k(n) ≥ j) ≈

∞∑
j=1

jP (X > j)·1
j
≈ E(X),

and we have that E(X) <∞.
Hence

S̄k(n) − E(S̄k(n))

k(n)
→ 0,

almost surely.
Then, E(S̄k(n))/k(n) → E(x) since E(X̄i) → E(X) by DCT, so S̄k(n)/k(n) → E(X)

almost surely. Since X̄i > 0, we have

S̄k(n) ≤ S̄m ≤ S̄k(n+1),

and we can apply the squeezing argument from before but within bounds of 1/α, α. It
suffices to choose any α > 1, so choosing α arbitrarily close to 1 gives that lim sup and
lim inf are both equal to E(X).

Hence, S̄m/m→ E(X) almost surely, and by BC we have that

Sm
m
→ E(X),

when X ≥ 0 almost surely. The full theorem comes from splitting Sm = S+
m − S−m.
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Corollary 10.2

If Xi iid with E(Xi) =∞ then Sn/n→∞.

Proof. Take Xm
i = Xi1(Xi < m). E(Xm

i ) < ∞ and Smn
n → E(Xm

i ) and Sn/n ≥ Smn /n
for all n,m so choosing large enough m gives the result.

§10.2 Second Proof of SLLN

We will use the following:

Theorem 17 (Kolmogorov’s Maximal Inequality)

Let X1, X2, . . . be independent with E(X2
i ) <∞, E(Xi) = 0.

P (max
k≤n
|Sk| > ε) ≤ V ar(Sn)

ε2
.

Proof. Let An = {maxk≤n |Sk| > ε}/ Suppose Tk is the event that k is the smallest index
such that |Sk| > ε. Then,

An =
n⋃
k=1

Tk.

E(S2
n) ≥ E(S2

n1An) = E(S2
n

n∑
k=1

1Tk)

= E((Sk + (Sn − Sk))21Tk)

= E(S2
k1Tk) + E((Sn − Sk)21Tk) + E(Sk(Sn − Sk)1Tk).

The last term is 0 since Sk and 1Tk are measurable functions with respect to {X1, . . . , Xk},
but Sn − Sk =

∑n
j=k+1Xj is measurable with respect to {Xk+1 . . . , Xn}.

Hence,
E(S2

n1Tk) ≥ E(S2
k1Tk) ≥ ε2P (Tk),

since |Sk| > ε on Tk, which gives

P (An) ≤ V ar(Sn)

ε2

by the union bound.

Theorem 18

Suppose X1, . . . are independent mean 0 random variables. If
∑∞

i=1 V ar(Xi) <∞,
then

∑n
i=1Xi converges almost surely.
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§11 October 1st, 2020

Last time:

• We covered the SLLN using an exponentially growing convergent subsequence.

• Kolmogorov’s Maximal Inequality: Let X1, X2, . . . be independent with E(X2
i ) <

∞, E(Xi) = 0.

P (max
k≤n
|Sk| > ε) ≤ V ar(Sn)

ε2
.

§11.1 Another Proof of SLLN, continued

Theorem 19

Suppose X1, . . . are independent mean 0 random variables. If
∑∞

i=1 V ar(Xi) <∞,
then

∑n
i=1Xi converges almost surely.

Proof. We would like to show that S1, S2, . . . converges. It suffices to show that (Si) is
almost surely Cauchy. Given any ε > 0, there exists n0 such that for all n1, n2 > n0

|Sn1 − Sn2 | < ε.
Then,

P

(
sup

n≤k≤m
|Sk − Sn| > ε

)
= ε−2

m∑
k=n

V ar(Xk).

Hence,

P

(
sup
n≤k
|Sk − Sn| > ε

)
= ε−2

∞∑
k=n

V ar(Xk),

where we take the limit m → ∞ and use continuity from below. Denote An =
{supn≤k |Sk − Sn| > ε}. If we let Bn = {supk1,k2≥n |Sk1 − Sk2 | < 2ε}, then P (Bn) ≥
1 − P (An). Note that Bn increases and P (

⋃
Bn) ≥ 1 − limP (An) = 1, and since ε

is arbitrary, taking the intersection over ε = 1/m implies that Sk is Cauchy almost
surely.

Theorem 20

Suppose Xi are iid with E|Xi| <∞, E(Xi) = 0. Then
∑n

k=1
Xk
k converges almost

surely.

Proof. Let Xk = Xk1|Xk|≤k. We first show that
∑
Xk/k converges almost surely, and

Xk and Xk at finitely many points(by BC), which gives the desired result.
It suffices to show that

∞∑
k=1

V ar(Xk)/k
2 =

∞∑
k=1

E(Xk
2
)/k2 <∞.

Then

E(Xk
2
) =

∞∑
i=1

iP (|Xk| > i) ≤
k∑
i=1

iP (|X1| > i).
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Hence,

∞∑
k=1

E(Xk
2
)/k2 ≤

∞∑
i=1

iP (|X1 > i|)
∞∑
k=i

1

k2
≈
∞∑
i=1

iP (|X1 > i|)1

i
≈ E|X1| <∞.

Lemma 11.1 (Kronecker’s Lemma)

Suppose an ↑ ∞ and yk are real numbers such that
∑

k=1 yk/ak converges. Then∑n
k=1 yk/an → 0.

Proof. Note that
∑n

k=1 yk/ak = bn with bn → b. Then, yk = (bk − bk−1)ak. Then

a−1
n

n∑
i=1

yk = a−1
n

n∑
k=1

(bk − bk−1)ak

= a−1
n

(
anbn +

n−1∑
k=1

bk(ak − ak−1)

)

= bn −
n−1∑
k−1

bk

(
ak − ak−1

an

)

Hence,
∑n−1

k−1 bk

(
ak−ak−1

an

)
→ b and bn → b, so the difference converges to 0.

This implies SLLN, since
∑
Xk/k converges almost surely. We claimed that this was

quantitative.

Example 11.2 (Tighter Bound)

Suppose X1, X2, . . . are iid and E(Xi = 0), E(X2
1 ) < c. We have already proved

that
∑n

i=1Xi/n→ 0 almost surely. We can also show that∑n
i=1Xi√

n log n1/2+ε
→ 0

almost surely, for any ε > 0.

Proof. Let ak =
√
k log k1/2+ε. It suffices to show the convergence of

n∑
k=1

Xk

ak
.

Note that
∞∑
k=1

V ar(Xk/ak) ≈
∞∑
k=1

C

k(log k)1+2ε
<∞.
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Example 11.3

Let X1, X2, . . . be iid with EXi = 0. Assume that E|X1|p <∞ for some p ∈ (1, 2).
Then Sn/n

1/p → 0.

Proof. Let Yk = Xk1|Xk|<k1/p . Note that

∞∑
k=1

P (Yk 6= Xk) =
∞∑
k=1

P (|Xk|p > k) ≤ E|X1|p <∞.

We then show the convergence of∑ Yk − EYk
k1/p

.

It suffices to show that
∑∞

k=1 V ar(Yk)/k
2/p <∞. Then

∞∑
k=1

V ar(Yk)/k
2/p ≤

∞∑
k=1

EY 2
k /k

2/p,

where m = k
1/p
0 . Then, EY 2

k =
∑k1/p

m=1m
2P (x ∈ [m,m+ 1]), so this is approximately

∞∑
m=1

m2P (x ∈ [m,m+ 1])

∞∑
k=k0

1

k2/p
≈
∞∑
m=1

m2P (x ∈ [m,m+ 1])
1

k
2/p−1
0

,

and k
2/p−1
0 = m2−p, so this simplifies to

∞∑
m=1

mpP (x ∈ [m,m+ 1]) ≈ E|X|p <∞.

Finally E(Yk) = −E(X1|Xk|>k1/p) and

E(X1|Xk|>k1/p) = k1/pE((X/k1/p)1|X|>k1/p) ≤ k
1/pE(|X/k1/p|p1|X|>k1/p).

This can be written as
k1/p−1E(|X|p1|X|>k1/p)→ 0,

so

|
∑

EYk| ≤
n∑
k=1

k1/p−1bk ≈nk=1 n
1/pbk → 0.
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Lemma 11.4 (Glivenko-Cantelli)

Consider a X1, X2, . . . iid for some distribution F . Define

Fn(y) =
1

n

n∑
i=1

1Xi≤y.

Then, almost surely,
sup
y
|Fn(y)− F (y)| n→∞−−−→ 0.

Proof. The uniformity follows because F and Fn are monotone.
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§12 October 6th, 2020

§12.1 Convergence of Distributions

Lemma 12.1 (Glivenko-Cantelli)

Consider a X1, X2, . . . iid for some distribution F . Define

Fn(y) =
1

n

n∑
i=1

1Xi≤y.

Then, almost surely,
sup
y
|Fn(y)− F (y)| n→∞−−−→ 0.

Proof. Note that Fn is monotonically increasing from 0 to 1. We divide the real line into
intervals depending on F as follows: Fix ε > 0. Say Z0 = −∞, Z1 = inf{y : F (y) ≥ εε},
and Zn = inf{y : F (y) ≥ nε}. We eventually have a sequence of random variables {Zn}.
We also define Z1/ε =∞.

For any i, sup |Fn(x)−F (x)| is small for all x ∈ [Zi, Zi+1). Note that F (Zi+1)−F (Zi) ≤
ε. Then, we apply SLLN: We let wj = 1(Xj ≤ Zi) and w′j = 1(Xj < Zi+1). Then
E(wj) = F (Zi) and E(w′j) = F (Zi+1). Then we use SLLN to show that the end points
are uniformly close and we sandwich the limit inside [Zi, Zi+1).

Definition 12.2. Let Fn, F be distribution functions. We say Fn → F in the sense of
distributions in Fn(x)→ F (x) such that F is continuous at x.

Example 12.3

Let Fn be the distribution induced by the point mass at 1/n. We see that Fn(0) = 0,
which does not converge to F (0), which is 1.

Example 12.4

SupposeXi are iidBer(±1). Let Sn =
∑n

i=1Xi and consider Sn√
n
→ Standard Gaussian.

Take any random variable with distribution F . Let Xn = X + 1
n , then Xn → X in

distribution. For any continuity point z of F , Fn(z)→ F (z) and Fn(z) = F (z − 1
n),

so fro all Xn ≤ Z,X ≤ z − 1
n which implies that

P (Xn ≤ z) = P (X ≤ z − 1/n) = F (z − 1/n).

We investigate the relationship between notions of convergence. If Xn → X in
probability, does Xn → X in distribution? Yes.

If Xn → X in probability, P (|Xn −X| > ε)→ 0. Note that

P (Xn ≤ z) ≤ P (X ≤ z + ε) + P (|Xn −X| > ε),

so lim supP (Xn ≤ z) ≤ P (X ≤ z + ε) ≤ P (X ≤ z).
Then

P (Xn ≤ z) ≥ P (x ≤ z − ε)− P (|Xn −X| > ε),

so lim inf P (Xn ≤ Z) ≥ P (X ≤ z − ε) ≥ P (X ≤ z−), so P (Xn ≤ z) = P (X ≤ z).
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The converse does not make sense. One example that fails where Xn → X in
distribution but Xn 6→ X where X = Ber(±1) and X1, X2, . . . are all −X. Then
Xi ∼ X, but Xi −X = −2X.

Theorem 21 (Skorokhod Representation)

If Fn → F in distribution, then there exists a probability space (Ω,Σ, P ) and random
variables Xn, X defined on Ω such that Xn ∼ Fn and Xn → X almost surely.

Proof. We did some similar when given a distribution F , we constructed a random
variable with distribution F . We work in the uniform space ([0, 1], B, P ). Then Xn =
F−1
n (ω) = sup{y : Fn(y) < ω} and X(ω) = F−1(ω) = sup{y : F (y) < ω}. It suffices to

show that F−1
n (ω)→ F−1(ω).

Define F ′−1
n (ω) = inf{z : Fn(z) > ω} and similarly F ′−1

n . Let A = {ω : F−1(ω) <
F ′−1(ω)}. We showed in homework that A is countable. We now prove that Xn → X
in Ac. Suppose that F−1

n (ω) → z. Let u < z < v where u, v are continuity points and
F (u) < ω − ε, F (v) > ω + ε. These can be chosen because the set of discontinuities of
a function is countable. For all large n, Fn(u) < ω − ε/2 and Fn(v) > ω + ε/2 because
Fn → F at all continuity points. Then F−1

n (ω) ≥ u and F−1
n (ω) ≤ v, hence

lim sup
n
|F−1
n (ω)− z| ≤ u− v.

But u, v were arbitrary continuity points, so

lim sup
n
|F−1
n (ω)− z| = 0.

Fact 12.5. Xn → X in distribution if and only if for any bounded continuous function
g, E(g(Xn))→ E(g(X)).

Proof. If Xn → X in distribution, then we have Yn → Y with Yn ∼ Xn, Y ∼ X so
g(Yn) has the same distribution as g(Xn). Thus E(g(Yn)) = E(g(Xn)). Then, g is
continuous so g(Yn)→ g(Y ) almost surely since Yn → Y almost surely, and g is bounded
so E(g(Xn)) = E(g(Yn))→ E(g(Y )) = E(g(X)).

For the other direction, if E(g(Xn))→ E(g(x)) for all bounded continuous functions g,
we choose a mollified indicator function. Then E(g(Xn)) ≥ P (Xn ≤ z) and E(g(Xn))→
E(g(X)) ≤ P (x ≤ z + ε). Hence,

lim supP (Xn ≤ z) ≤ P (x ≤ z + ε).

Similarly,
lim inf P (Xn ≤ z) ≥ P (X ≤ z − ε),

which gives that P (Xn ≤ z) → P (X ≤ z) by using the fact that z is a continuity
point.

This gives an alternate definition of convergence in distribution.
For any topological space and a sequence of measures µn and µ on Ω, we can say

µn → µ in distribution if for all bounded continuous g : Ω→ R, Eµng → Eµg.
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Theorem 22 (Continuous Mapping Theorem)

Suppose Xn → X and g : R→ R is a measurable function such that Cg is a set of
continuity points of g such that P (X ∈ Cg) = 1, then g(Xn)→ g(X) in distribution.

Proof. Note that the set of continuity points for a measurable function g, Cg is measurable.
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§13 October 8th, 2020

Last time,

• We defined distributional convergence.

• We proved the Skorokhod Representation Theorem.

• We showed an equivalent notion of distributional convergence, namely for bounded
continuous functions g, E(g(xn))→ E(g(x)) implies xn → x in distribution.

§13.1 Weak Convergence

Theorem 23 (Continuous Mapping Theorem)

Suppose Xn → X and g : R→ R is a measurable function such that Cg is a set of
continuity points of g such that P (X ∈ Cg) = 1, then g(Xn)→ g(X) in distribution.

Proof. We claimed that Cg, the set of continuity points is measurable. We know that
Xn → X in distribution, so there exists Yn → Y almost surely with Xn ∼ Yn, X ∼ Y .
Then g(Xn) ∼ g(Yn) and g(X) ∼ g(Y ). Then Y ∈ Cg almost surely because X ∼ Y .
Therefore, g(Yn)→ g(Y ) almost surely, which implies distributional convergence.

§13.2 Portmanteau’s Lemma

We show many equivalent conditions for distributional convergence.

1. Fn
d−→ F

2. For any open U , lim inf Pn(U) ≥ P (u).

3. For any closed V , lim supPn(V ) ≤ Pn(V ).

4. For any A such that P (∂A) = 0(∂A = A \Ao), we have Pn(A)→ P (A).

Proof. We first show 1 implies 2. Let Yn ∼ Fn, Y ∼ F with Yn → Y almost surely. Let
Fn = 1(Yn ∈ U), f = 1(Y ∈ U). Then P (Yn ∈ U) = Pn(U). Finally,

lim inf
n→∞

fn ≥ f.

This is because f(ω) = 1 if Y (ω) ∈ U and 0 otherwise. Pick ω such that f(ω) = 1.
Then Y (ω) ∈ U and Yn(ω)→ Y (ω) and U is open, we know that for large n, Yn(ω) ∈ U .
Hence, fn(ω) = 1 for large n, so lim inf fn = 1.

Finally, by Fatou’s Lemma,

lim inf Pn(U) ≥
∫

lim inf fn ≥
∫
f = P (U).

2 implies 3 is easy. We take V c, then Pn(V ) = 1 − Pn(V c) and lim supPn(V ) =
1− lim inf Pn(V c).

We show 3 implies 4. Note that A = A ∪ ∂A and P (A) = P (A). Then Ao = A \ ∂A
and P (Ao) = P (A). By 2, lim inf Pn(Ao) ≥ P (A) and lim supPn(A) ≤ P (A) and
Pn(Ao) ≤ Pn(A) ≤ Pn(A). Therefore, Pn(A)→ P (A).

Finall 4 implies 1. If Pn(A) → P (A) for P (∂A) = 0, then choose A = (−∞, x] for a
continuity point x. Then P ({x}) = 0, so we get Fn(x) = Pn(A)→ P (A) = F (x).
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§13.3 Helly’s Selection Theorem

Theorem 24

Given a sequence of distributions F1, F2, . . . , there exists a subsequence n1, n2, . . .
and a right continuous non-decreasing function F so that Fnk(x) → F (x) for all
continuity points.

Note that F may not be a distribution since F (∞)− F (−∞) 6= 1. For example, take
Fn(x) = 1x≥n. Then Fn(x) = 0 for n ≥ x so Fn → 0, which is not a distribution.

Proof. We want Fnk(x)→ F (x). If we fix x, 0 ≤ Fn(x) ≤ 1 so we can pick a subsequence
so that Fnk(x)→ a from the compactness of [0, 1]. We first ensure convergence for the
rationals. Let {qn} be an enumeration of the rationals. Iteratively choose subsequences

nik such that {nik} is a subsequence of {ni−1
k } and F

(
nkqi) converges.

Hence, Fnkk
(q) converges for all q ∈ Q. We will call this {nk} for convenience. Let the

limit be limk→∞ Fnk = G(q).
Then, define F (x) = infq>xG(q). We show Fnk(x)→ F (x) for all x with F continuous

at x. Pick q1, q2, q3 ∈ Q so that q1 > x > q2 > q3. Then Fnk(x) ≤ Fnk(q1) so
lim sup fnk(x) ≤ G(q1) so lim supFnk(x) ≤ F (x).

Since x is a continuity point, there exists q3 close to x so that F (q3) ≥ F (x)− ε, but
F (q3) = infq>q3 G(q), so there exists q2 with q3 < q2 < x so that G(q2) ≥ F (q3) + ε
so G(q2) ≥ F (x) − 2ε. But Fnk(x) ≥ Fnk(q2) so lim inf Fnk(x) ≥ G(q2) ≥ F (x) − 2ε so
lim inf Fnk(x) ≥ F (x).

When does the limit preserve mass?

Definition 13.1. Given ε > 0, {Fn} is tight if there exists Mε so that Fn in the sequence

Fn(Mε)− Fn(−Mε) ≥ 1− ε.

Tightness is a necessary and sufficient condition for preserving mass.

Proof. We have Fnk → F for continuity points. We show F has mass 1. We can assume
Mε,−Mε are continuity points. Then

Fnk(Mε)− Fnk(−Mε)→ F (Mε)− F (−Mε) ≥ 1− ε.

If a sequence is not tight, then there exists subsequential limits with mass less then 1.

§13.4 Fourier Transforms

Let X be a random variable with distribution F . For any t, define φ(t) = E(eitx).
We have some properties:

• φ(0) = 1.

• φ(t) = φ(−t).

• |φ(t)| ≤ 1.
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Proof. We use Jensen’s Inequality: For a convex function φ(x1, x2, . . . , xn) with
E|φ| <∞, E|Xi| <∞ for all i, then E(φ) ≥ φ(EX1, EX2, . . . ).

Take (x, y) 7→ (x2 + y2)1/2. Then

|φ(t)| ≤ E|eitx| = 1.

• φ is uniformly continuous.

|φ(t+ h)− φ(t)| ≤ |E(ei(t+h) − eitx)| ≤ E|eitx(eihx − 1)| = E|eihx − 1| → 0,

by the Bounded Convergence Theorem.
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§14 October 13, 2020

§14.1 Fourier Transforms, Continued

Recall φ(t) = E(eitx). The broad goal is to study distributional convergence using the
characteristic functions.

§14.2 Differentiability of Characters

When is φ(t) differentiable? If φ is differentiable at t, then φ′(t) = E(ixeitx), so
φ′(0) = E(ix). For this to make sense, we might need E|X| <∞.

Theorem 25

If E|X| <∞, then φ is continuously differentiable.

Proof.

lim
h→0

φ(t+ h)− φ(t)

g
= E

(
ei(t+h)X − eitX

h

)

It suffices to show that

E

(
ei(t+h)X − eitX

h
− ixeitX

)
→ 0.

E

(
ei(t+h)X − eitX

h
− iXeitX

)
= E(iXeitX(

itX − 1

ihX
− 1))

= E

(
iXeitX

(∫ h
0 e

inX − 1

h
− 1

))
≤ E(|iXeitX | sup

u≤h
|eiuX − 1|)→ 0

by DCT, since the argument is at most 2|X|.
Then, φ′ is continuous since

φ′(t+ h)− φ′(t) = E(ixei(t+h)x0eitx) = E(ixeitx[eihx − 1])→ 0

by DCT.

Similarly if E|X|k <∞, then φ(t) ∈ Ck. The proof follows straightforwardly by induction
on the moment.

Lemma 14.1

If φ is twice-differentiable, then E(X2) <∞.
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Proof. Note that
2φ(0)− φ(h)− φ(−h)

h2

h→0−−−→ −φ′′(0).

But this quantity is exactly

2− 2E(cos(hx))

h2
→ −φ′′(0)

since φ(h) = E(cos(hx) + i sin(hx)) and φ(−h) = E(cos(hx)− i sin(hx)).

Finally, cos(x) = 1− x2

2 , so we fh(X)→ X2, fh(X) ≥ 0 and E(fh(x))→ φ′′(0)(where
fh(X) is the term inside the expectation). It follows that E(X2) ≤ limE(fh(X)) =
−φ′′(0). Furthermore, φ′′(0) = E(−X2).

§14.3 Fourier Inversion Formula

Let X ∼ µ and φ(t) = E(eitx). Let F be the distribution induced by µ. We would like
to approximate F (b)− F (a).

We consider ∫ T

−T

∫ b

a
e−iutφ(t)dudt =

∫ T

−T

e−iat − e−bt

it
φ(t).

Then∫ T

−T

e−iat − e−bt

it

∫
R
eitxdµ =

∫
R

∫ T

−T

eit(x−a) − eit(x−b)

it
= 2

∫
R

∫ T

0

sin(t(x− a))− sin(t(x− b))
t

dt.

Hence, we have

2

∫
R
dµ

∫
0T

sin(t(x− a))− sin(t(x− b))
t

dt.

Then, for any x, ∫ T

0

sin(θx)

x

is bounded as T →∞ and converges to π
2 sgn(θ). It follows that the integral converges to

πµ({a}) + πµ({b}) + 2πµ(a, b). Dividing by 2π throughout, gives

µ(a, b) +
µ({a} ∪ {b})

2
.

Lemma 14.2

If F1, F2 are two distributions with φ1(t) = φ2(t), where φ1 and φ2 are the charac-
teristics functions, then F1 = F2.

Proof. Consider the set A = {x : µ1(x), µ2(x) > 0}, which is countable. For all a, b,∈ Ac,
µ1([a, b]) = µ2([a, b]). Then, send a→ −∞ to show F1(b) = F2(b) for all b ∈ Ac, but Ac

is dense so F1 = F2 everywhere by right-continuity.

Theorem 26

If φ(t) is integrable, then F has a density: F [a, b] =
∫ b
a fdx for all a, b.

Namely,

f(x) =
1

2π

∫
R
e−ixtφ(t)dx.
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Proof. We first show there are no atoms, µ(x) = 0 for all x. Then for a < x < b

µ(x) ≤
∫
|φ(t)||b− a| → 0.

Finally, ∫ b

a

1

2π

∫
R
e−iutφ(t) = µ(a, b) = µ[a, b].

It is easy to show that f is real valued.

f(u) =

∫
eiutφ(t) =

∫
R
eiutφ(−t) =

∫
R
e−iutφ(t)dt = f(u).
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§15 October 15th, 2020

Recall

• Moments of a Random Variable implies smoothness of the characteristic functions
In particular, the existence of the k-th moment implies that φ(k) exists and is
continuous.

• The Inversion Formula:

1

2π

∫ T

−T

∫ b

a
e−ituφ(t)dt

T→∞−−−−→ 1

2
µ({a, b}) + µ(a, b).

• If φ(t) is integrable, then a density exists - namely

f(x) =
1

2π

∫ ∞
−∞

e−itxφ(t).

This implies that
∫ b
a f = µ[a, b]. We can also show that f is continuous since

|f(t+ h)− f(h)| → 0 uniformly by the dominated convergence theorem.

§15.1 Characteristic Functions

Proposition 15.1

If X,Y are independent random variables, φX+Y (t) = φX(t)φY (t).

Proof.
E(eit(X+Y )) = E(eitXeitY ) = E(eitX)E(eitY ).

Proposition 15.2

φ(t) = E

(
n∑

m=0

(itX)m

m!

)
+ o(tn).

Proof. Note that∣∣∣∣∣φ(t)− E

(
n∑

m=0

(itx)m

m!

)∣∣∣∣∣ ≤ Emin(2|x|n/n!, |x|n+1/(n+ 1)!).

This follows from the fact that∫ x

0
eis(x− s)nds =

xn+1

n+ 1
+

i

n+ 1

∫
eis(x− s)n+1ds.

Putting n = 0 gives

eix = 1 + ix+ i2
∫
eis(x− s).
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It follows by induction that

eix −
n∑

m=0

(ix)m

m!
=
in+1

n!

∫ x

0
eis(x− s)ndx.

Finally, ∣∣∣∣ in+1

n!

∫ x

0
eis(x− s)ndx

∣∣∣∣ ≤ ∫ x

0
(x− s)n/n! =

xn+1

(n+ 1)!
.

Then

1

n!

∫ x

0
eis(x− s)n =

1

n!
(eis/i)(x− s)n|x0 +

∫ x

0
neis/i(x− s)n−1)

=
1

n!
(ixn − in

∫ x

0
eis(x− s)n−1)

=
1

(n− 1!)

∫
(x− s)n−1(1− eis)

≤ 2xn/n!.

It follows that |φ(t)−
∑
E(itX)m/m!| ≤ Emin(2(tX)n/n!, (tx)n+1/(n+ 1)!)

§15.2 Weak Convergence

Theorem 27

For Fn distributions with φn(t), Fn converge in distribution if and only if φn →
φ(where φ is continuous at 0).

Remark: Consider N(0, 1). Then φ(t) = e−t
2
/2. It’s easy to prove that φ′(t) =

E(ixeitx) = −tφ(t), using integration by parts to simplify the right side with φ(0) = 1.
If X ∼ N(0, 1) σX ∼ N(0, σ2) so φ(t) = e−σ

2X2/2. Then φn → δ0. But Fn(x) → 1
2 for

all x. We will see that continuity at 0 gives the tightness condition.

Proof. We prove the forward direction. Fn → F in distribution implies that E(g(Xn))→
E(g(X)) for bounded continuous functions. The result follows since eitx is a bounded
continuous function.

We prove the converse. We first show that {Fn} is a tight sequence. Note that∫ u

−u
(1− eitx) = 2u−

∫ u

−u
(cos tx+ i sin tx)dt = 2u− 2 sinux

x
.

Then
1

2u

∫ u

−u
(1− eitx) = 1− sinux

ux
.

Then | sinx| ≤ |x|, so

1

2u

∫ u

−u
(1− φn(t)) =

∫
1− sinux

ux
dµn

≥ 1

2
µn(|x| ≥ 2/u).

Then φn(0)→ φ(0) = 1, so

µn(|x| > 2/u) ≤ u−1

∫ u

−u
(1− φn(t))dt→ u−1

∫ u

−u
(1− φ(t))dt ≤ 2ε,
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for some choice of u from the continuity of φ at 0.
Since ε is arbitrary, it follows that µn is tight. Now we show that Fn converges to F in

distribution. Note that any subsequence has a convergent subsequence which converges
to a distribution. Then the subsequences converge to φni → φF , and φn → φ so φF = φ.
Hence, every subsequence has a convergence converges to the same F by the uniqueness
of characteristic functions. Then Fn(x) → F (x) for all continuity points x of F and
it follows that for Fn(x), and subsequence admits a further subsequence converging to
F (x). Hence Fn(x) → F (x), since otherwise one can extract a subsequence such that
|Fni(x)− F (x)| > δ for all i.
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§16 October 20th, 2020

§16.1 Basic Central Limit Theorem

Under natural conditions, we will prove that

Sn√
n

d−→ N(0, σ2).

Example 16.1

Let Xi = ±1 with probability 1/2. We can analyze binomial coefficients to prove a
central limit theorem.

Theorem 28

Let Xi be iid E(Xi) = 0, E(X2) = 1. Then

Sn√
n

d−→ N(0, 1).

Proof. Recall that φz(t)e
−t2/2. Hence, we show that φSn/

√
n(t)→ e−t

2/2.
Then

φSn/
√
n(t) = φSn(t/

√
n).

Then Sn =
∑
Xi iid, so

φSn(t/
√
n)) = (φX1(t/

√
n))n.

Then

|φXi(t/
√
n)− E

2∑
m=0

(itx/
√
n)m/m!| ≤ E(min{(itx/

√
n)2, (itx/

√
n)3}).

Then, the expectation simplifies to 1− t2/2n since E(X1) = 0, E(X2
1 ) = 1.

Then,
E = E(min{(itx/

√
n)2, (itx/

√
n)3}) = o(t2/n),

or E
t2/n
→ 0 as t2/n→ 0. This is because

E =
t2

n
E(min(X2, t/

√
nX3))

t2/n→0−−−−−→ 0,

by DCT.
Hence,

φX1(t/
√
n)n = (1− t2/2n+ o(t2/n))n.

We show that
(1− t2/2n+ o(t2/n))n → e−t

2/2.

More generally, we show that if cn → c, then (1 + cn/n)n → ec.
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Lemma 16.2

Suppose we have complex numbers z1, z2, . . . , zn, w1, w2, . . . , wn with |zi||wi| ≤ θ.
Then ∣∣∣∣∣

n∏
i=1

zi −
n∏
i=1

wi

∣∣∣∣∣ ≤ θn−1
n∑
i=1

|zi − wi|.

Proof. We use telescoping.∏
zi −

∏
wi =

n∏
i=1

zi −
n−1∏
i=1

ziwn + prodn−1
i=1 ziwn −

n−2∏
i=1

ziwn−1wn + · · · −
n∏
i=1

wi.

Then, using the triangle inequality and summing the bound gives that

|
∏

zi −
∏

wi| ≤ θn−1
∑
|zi − wi|.

We first bound
|(1 + cn/n)n − ecn | .

The whole thing is the same as |(1 + cn/n)n − (ecn/n)n|. Note that ex ≥ 1 + x for real x
and |ex − (1 + x)| ≤ |x|2 for complex x.

Note that 1 + |cn/n| ≤ e|cn/n| = θ, so the error is bounded by

ne|cn/n|(n−1)|ecn/n − (1 + cn/n)| ≤ e|cn/n|(n−1)|cn|2/n,

and it follows that (1 + cn/n)n → ec.

§16.2 Lindeberg-Feller CLT

Theorem 29 (Lindeberg-Feller)

We prove CLT for a triangular array of random variables. Consider

X11

X21, X22

. . .

Xn1, Xn2, . . . , Xnn

independent. We suppose that EXni = 0,
∑n

i=1EX
2
ni → 1 and

∑n
i=1E(X2

ni, 1(|Xni| >
ε))→ 0 for all ε > 0.

Let Sn =
∑n

i=1Xni. We show that Sn
d−→ N (0, 1).

Example 16.3

For the previous example, we had X1, X2, . . . and Sn =
∑n

i=1Xi. We take Xni =
Xi/
√
n. We know that EXni = 0 and E(X2

ni) = 1
n , so

∑
EX2

ni = 1.
Then

n∑
i=1

E(X2
ni, 1(|Xni| > ε)) = nE(X2

ni, 1(|Xni| > ε)) = E(X2
1 1|X1| > ε

√
n)→ 0.
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Proof. Note that φSn(t) =
∏
φXni(t). Let EX2

ni = σ2
ni. We have that

∑
σ2
ni = 1. We

want to show that φSn(t)→ e−t
2/2.

Note that

|φXni(t)− (1− σ2
nit

2/2)| ≤ E(min(t2X2
ni, t

3X3
ni))

≤ E(t2X2
ni1|Xni > ε|) + E(t3X3

ni1|Xni| < ε|)
≤ E(t2X2

ni1|Xni| > ε) + εt3E(X2
ni1|Xni| < ε).

If we sum the left and take limits, we have

n∑
i=1

Eni ≤ 0 + εt3
n→∞,ε→0−−−−−−→ 0.

Now, from the previous lemma, note that |φni(t)| ≤ 1. We also have |1− σ2
nit

2/2| ≤ 1,
since supσ2

ni → 0. This is because

σ2
ni = EX2

ni = E(X2
ni||Xni| < ε) + E(X2

ni||Xni| > ε)→ 0.

Hence, ∣∣∣∏φni(t)−
∏

(1− σ2
nit

2/2)
∣∣∣→ 0.

Finally,

log
(∏

(1− σ2
nit

2/2)
)

=
∑

log(1− σ2
nit

2/2) ≈ −
∑

σ2
nit

2/2→ −t2/2,

so
φSn(t)→ e−t

2/2.

§16.3 Kolmogorov Three-Series Theorem

Theorem 30 (Kolmogorov Three-Series)

Let X1, . . . , Xi, . . . be independent and
∑n

i=1 converges almost surely. The above
and the following are equivalent. For A > 0,

1.
∑∞

i=1 P (|Xi| > A) <∞.

2. Where Xi = Xi1(|Xi| < A),
∑n

i=1EXi converges.

3.
∑∞

i=1 V ar(Xi) <∞.

Proof. We first prove the converse. It suffices to show that
∑
Xi converges almost surely,

since
∑
Xi converges is equivalent to

∑
Xi converging by BC.

By the Kolmogorov Maximal Inequality,
∑
V ar < ∞ implies converges of centered

independent random variables, so
∑
Xi −E(Xi) converges and

∑
E(Xi) converges by

assumption, so
∑
Xi converges.

Now,we prove the forward direction. The first condition is easy since by BC, |Xi| < A
eventually, so

∑
P (|Xi| > A) < ∞. We now prove

∑
V ar(Xi) < ∞. Suppose not:

let cn =
∑n

i=1 V ar(Xi). Then cn → ∞. Define Xni = Xi−EXi√
Cn

. Note that EXni = 0,∑n
i=1EXni

2
= 1. Finally, for ε > 0,∑

E(Xni
2
, 1(|Xni| > ε))→ 0,
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since Xni > ε implies that Xi − EXi > ε
√
cn. By Lin-Fell CLT,

∑ Xi − EXi√
cn

→ N (0, 1).

But by hypothesis,
∑
Xi converges almost surely, so∑

Xi/
√
cn → 0,

which is a contradiction.
Hence,

∑
V ar(Xi) <∞. By KMI,

∑
Xi−EXi converges, so

∑
EXi converges, giving

2.
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§17 October 22nd, 2020

§17.1 CLT with Unbounded Variance

Let X1, X2, . . . by iid symmetric random variables, and P (|Xi| > x) = 1
x2

for all x > 1.
Then

E(X2) =

∫
2xP (|X| > n) =

∫
2/x =∞.

We will handle this by using truncation, applying BC, and using CLT for truncated
variables. We want to truncate at the smallest possible level so that BC can still be
applied.

Define Xn
i = Xi1(|Xi| ≤

√
n log logn) for i ≤ n. Then,

P (X1 + · · ·+Xn 6= Xn
1 +Xn

2 + · · ·+Xn
n ) ≤ n

(
√
n log logn)2

→ 0.

By symmetry, EXn
i = 0. Then

E((Xn
i )2) ≤

∫ √n log logn

1
2xP (|X| > n) =

∫ √n log logn

1

2

x
= log(n(log log n)2) = logn+2 log log log n.

We can also lower bound it by approximately log n, so E((Xn
1 )2) = log n + o(log n).

Using LF CLT, take
Xn

1√
n log n

,
Xn

2√
n log n

, . . . ,
Xn
n√

n log n
.

We show the sum of variances to a limit, and contributions from large variances add
up asymptotically to 0.

Note that
n∑
i=1

V ar(Xn,i) = n
log n+ o(log n)

n log n
→ 1.

Then
n∑
i=1

E(Xn,i
2
, |Xn,i| > ε)→ 0,

since
Xi1(|Xi| ≤

√
n log log n)√

n log n
≤ log log n√

log n
< ε

for large n.

By LF , Sn√
n logn

d−→ N(0, 1), and by BC it follows that Sn√
n logn

d−→ N(0, 1).

§17.2 General Theory of Distributions

We have a separable metric space (S, d) and we define distributions convergence in this
context.

Definition 17.1. Xn
d−→ X if Ef(Xn) toEf(X) for any bounded continuous function f .
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Theorem 31 (Equivalent Conditions for Convergence)

The following are equivalent.

1. Ef(Xn)→ Ef(X) for all bounded continuous f .

2. For closed K, lim supP (Xn ∈ K) ≤ P (X ∈ K).

3. For open U , lim inf P (Xn ∈ U) ≥ P (X ∈ U).

4. For A with P (∂A) = 0, P (Xn ∈ A)→ P (A).

5. If f is a bounded measurable function and Df denotes the discountinuity
points of f , if P (X ∈ Df ) = 0, then Ef(Xn)→ Ef(X).

Remark: We have not stated a Skorokhod Representation Theorem.

Proof. We only show 4 implies 5, the rest are trivial. Suppose |f(x)| ≤ K. Divide
[−K,K] into intervals of size ε, and call them Ii. Let Ai = f−1(Ii). It suffices to show
that P (Xn ∈ Ai)→ P (X ∈ Ai). Note that ∂Ai ⊂ Df ∩ f−1(iε)∪ f−1((i+ 1)ε). Then, we
choose the partition so that the boundary points have 0 mass(which is possible since the
set of boundary points with positive mass is countable). Hence, the boundary probability
is 0 and the result follows.

§17.3 Convergence in Rd

We can talk about distribution functions F (X) ↑ 1 as X ↑ ∞ and F (X) ↓ 0 with X ↓ −∞
that are right continuous and monotone. We also require that all rectangles have positive
mass.

Then, we define weak convergence as Fn(x)→ F (x) for all continuity points of X. In
d = 1, there were at most countably many discontinuity points. In d > 1, this is false.
For example, take Y = U [0, 1], X = 0 and (0, Y ). The distribution function is given by

F (x, y) =


1, x ≥ 0, y ≥ 1

y, x ≥ 0, 0 ≤ y ≤ 1,

0 else.

which is discontinuous at each (0, y).

Exercise 17.2. For each coordinate, the discontinuity points for each coordinate Di is
countable.

Theorem 32

Fn(x)→ F (x) at continuity points is equivalent to Xn → X in distribution.

Proof. If Xn → X in distribution, then Fn(x)→ F (x) and x is a continuity point, since
if x is a continuity point, the hyperplane passing through x has mass 0 so P (X ∈ ∂A) = 0
so P (Xn ∈ A)→ P (X ∈ A), and by definition, this is Fn(x)→ F (x).

If Fn(x)→ F (x) for all continuity points, then given A = (a1 × b1]× · · · × (ad × bd],
then P (Xn ∈ A) → P (X ∈ A). Observing that any open set can be approximated
from the inside by a disjoint union of such rectangles, we find that lim inf P (Xn ∈ U) ≥
limP (Xn ∈ B) = P (X ∈ B) ≈ P (X ∈ U).
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§18 October 27th, 2020

§18.1 Fourier Inversion in Rd

For a distribution F on Rd with X ∼ F ,

φX(t) = E(ei〈t,x〉),

where

〈t, x〉 =

d∑
i=1

tixi.

We can show the inversion theorem generalizes: take A = [a1, b1]× [a2, b2]× · · · × [ad, bd].
Suppose P (∂A) = 0.

In 1D, recall that we had

1

2π

∫ T

−T

e−ita − e−itb

it
φ(t)

T→∞−−−−→ µ(a, b) +
1

2
µ({a, b}).

Let t = (t1, t2, . . . , td). Then

(2π)−d
∫ d

−T,T

d∏
i=1

ψ(ti, ai, bi)φ(ti)→ µ(A),

where ψ(t, a, b) = e−ita−e−itb
it . The result follows from applying Fubini’s theorem to get

∫ d∏
i=1

∫ T

−T
ψ(ti, ai, bi)e

itixi ,

and
∫ T
−T ψ(ti, ai, bi)e

itixi → 1(Xi ∈ (ai, bi)) + 1/21(Xi ∈ {ai, bi}).
It follows that ∫ d∏

i=1

∫ T

−T
ψ(ti, ai, bi)e

itixi → µ(Ao) = µ(A).

§18.2 Convergence of Characters

Theorem 33

Xn ⇒ X∞ if and only if φXn → φX∞ .

Proof. The forward direction follows from the definition of bounded continuous functions
converging. For the converse, we show that φXn → φX∞ implies tightness, which
implies existence of subsequential limits, which implies that every subsequential limit
has characteristic function φX∞ , which by inversion implies that the limit is unique. We
already have continuity at 0. Note that Xn = (X1

n, . . . , X
d
n), X∞ = (X1

∞, . . . , X
d
∞). We

have that φXi
n
(t)→ φXi

∞
(t). It follows that each of {Xi

n}n are tight sequences.

By tightness, there exists P (Xi
n ∈ [−Mi,Mi]

c) < ε
d . Then,

P (Xn ∈ (×[−Mi,Mi])
c) ≤ ε,

so Xn is tight, as desired.
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Proposition 18.1

Xn ⇒ X∞ if and only if 〈θ,Xn〉 ⇒ 〈θ,X∞〉 for all θ ∈ Rd.

Proof. We could use the continuous mapping theorem or characteristics functions. We
could also use characteristic functions. We know that φXn(tθ)→ φX∞(tθ), but note that
φXn(tθ) = φθ·Xn(t)→ φθX∞(t). The other direction is clear taking φθXn(1) = φXn(θ)→
φX∞(θ).

§18.3 Multivariate Central Limit Theorem

Definition 18.2. X is said to have multivariate Gaussian distribution with covariance
Σ and mean 0 if

φX(θ) = eθ
TΣθ/2.

Theorem 34 (Multivariate CLT)

If X1, . . . are iid random vectors with mean 0 covariance Σ, then

X1 +X2 + · · ·+Xn√
n

d−→ N (0,Σ).

Proof. The proof follows from using 1D CLT and using the lemma above.

§18.4 Poisson Processes

Theorem 35

Suppose we had a triangular arrow {Xi
n} with Xin ∼ Ber(Pn,i) where

∑n
i=1 Pn,i → λ

and max1≤i≤n Pn,i → 0. Then,

n∑
i=1

Xn
i

d−→ Poi(λ)

where P (X = k) = eiλλk/k!.

Proof. The characteristic function for a Poisson variable is

φX(t) =
∑

eitxe−λλk/k! = e−λ
∑

(eitλ)k/k! = e−λee
itλ

= eλ(eit−1).

The characteristic function of Ber(Pni) is

φ(t) = 1− Pni + Pnie
it = 1 + Pni(e

it − 1).

Then,

φXn
1 +···+Xn

n
(t) =

n∏
i=1

(1 + Pni(e
it − 1)) = A.

If we compute e
∑
Pni(eit−1) = B.

We find that

|A−B| ≤
n∑
i=1

Pni|eit − 1|2 ≤ 4
n∑
i=1

P 2
ni ≤ 4 maxPni

∑
Pni → 0.

Then e
∑
Pi(e

it−1) → eλ(eit−1) = φPoi(λ)(t).
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§18.5 Signed Measures

Definition 18.3. In a space (Ω,Σ), we have µ : Σ→ (−∞,∞] so that µ(∅) = 0 and if
A =

⋃
Ei disjoint, then either µ(A) =∞ of µ(A) <∞. In the first case

∑
µ(Ei)− <∞

and
∑
µ(Ei)+ = ∞. In the second case, we need

∑
|µ(Ei)| < ∞, which implies that∑

µ(Ei) = µ(A) is well-defined.

Example 18.4

If µ1, µ2 are finite measures, then µ1 − µ2 is a signed measure.

Example 18.5

In (Ω,Σ, µ) f is a measurable function with
∫
f− < ∞ and

∫
f+ = ∞, then

ν(A) =
∫
A f is a signed measure.

Definition 18.6. A set A ∈ Σ is positive if for all B ⊂ A µ(B) ≥ 0.

Lemma 18.7

If A1, A2, . . . are positive then so is
⋃
Ai.

Theorem 36 (Hahn Decomposition Theorem)

Given signed measures, there exists A,B so that A is negative, B is positive, A,B
disjoint and

µ(E) = µ(E ∩A) + µ(E ∩B).

Lemma 18.8

Suppose C is such that µ(C) < 0. Then there exists D ⊂ C with µ(D) < 0.
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§19 October 29th, 2020

§19.1 Decomposition Theorems

Definition 19.1. A set S is a null set if all its measurable subsets have 0 measure.

Lemma 19.2

Suppose C is such that µ(C) < 0. Then there exists D ⊂ C with µ(D) < 0.

Proof. We iteratively throw out sets with positive mass. Is S is negative, we are done.
Otherwise, there are sets of positive mass. Let n1 be the smallest integer such that there
exists E1 with µ(E1) ≥ 1

n1
. Then, consider S \ E1 and repeat.

If the process stops in finite steps, we are done, since S \ (E1 ∪ E2 ∪ · · · ∪ Ek) is a
negative set for some k. If not, let S′ = S \

⋃∞
i=1Ei. Because µ is a signed measure,

µ(S) = µ(S′) +
∞∑
i=1

µ(Ei).

Note that µ(S) < 0 and µ(S′) < 0, so we must have
∑∞

i=1 µ(Ei) <∞. Then S′ must be
negative. If not, there exists F ⊂ S′ with µ(F ) > 1/N for some N. But after some i0,
µ(Ei) <

1
n , so we would have thrown away F instead of the Ei, a contradiction.

Now we proof the Hahn Decomposition Theorem:

Proof. If there does not exist any set S with negative measure, we are done. If not,
there exist negative sets. Let α = inf{µ(C) : C negative}. Let C1, C2, . . . be increasing
negative sets with µ(Ci) ↓ α. We have shown that B =

⋃∞
i=1Ci is negative. Then

µ(B) ≥ α since α is the infimum. However, µ(B) ≤ µ(Ci) for all i, so µ(B) ≤ α, which
implies that µ(B) = α.

We claim that Bc is positive. If not, it contains a set with µ(D) < 0, which implies
there exists E ⊂ D with µ(E) < 0 and E is a negative set. Hence B ∪ E is a negative
set with µ(B ∪ E) < α, a contradiction.

The composition is then Ω = B ∪Bc. Suppose there is a set C ∪ Cc with C negative
and Cc positive. Then C ∩Bc is both negative and positive so it is a null set. Similarly,
Cc ∩B is a null set.

Definition 19.3. Meausres µ, ν are mutually singular if there is a set A with µ(A) = 0
and ν(Ac) = 0.

Theorem 37 (Jordan Decomposition)

For α a signed measure, there exists mutually singular measures α+ and α− such
that α = α+ − α−.

Proof. We take α+ = α|Bc and α− = −α|B where Ω = B∪Bc is the Hahn Decomposition.
In this case α+ and α− are unique, since null sets are measure 0 and don’t change the
value of the measures.

61



Vishal Raman (December 1, 2020) Math 218a

Theorem 38 (Lebesgue Decomposition Theorem)

If µ1, µ2 are finite measures, then µ2 = µa2 + µs2 such that there exists g ≥ 0 with
µa2(E) =

∫
E gdµ1 and µs2 is singular with respect to µ1.

Proof. We extract µa2 from µ2. Then, consider H = {h : h ≥ 0,
∫
h dµ1 ≤ µ2(E), E ∈ Σ}.

We want g is to be the maximal element of h. Note that if h1, h2 ∈ H then h1 ∨ h2 ∈ H.
If we take A : {h1 > h2}, then∫

E
h1 ∨ h2 dµ1 =

∫
E∩A

h1 dµ1 +

∫
E∩Ac

h2 dµ1 ≤ µ2(E ∩A) + µ2(E ∩Ac) = µ2(E).

Let α = suph∈H
∫
hdµ1. Let {hi} be so that

∫
hidµ1 ↑ α. Then g = limhi is well

defined since hi are increasing and∫
E
g dµ1 = lim

∫
E
hi dµ1 ≤ µ2(E).

Hence, g ∈ H and by MCT,
∫
g = α.

Define µa2(E) =
∫
E g dµ1. It suffices to show that µ′2 = µ2 − µa2 is singular with respect

to µ1.
Consider the signed measure µ′2 − εµ1 and consider the positive and negative part

Aε, Bε. If µ1(Aε) > 0 then g + ε1Aε ∈ H since∫
g + ε1Aεdµ1 = µa2(E) + εµ(1(Aε ∩ E) ≤ µa2(E) + µ′2(E) = µ2(E).

However, ∫
g + ε1Aεdµ1 = α+ εµ1(Aε) > α,

a contradiction.
For any ε, the positive part of µ′2 − εµ1, Aε has 0 µ1-mass. Where Bε is the negative

part, take A =
⋃∞
n=1A1/n and B =

⋂∞
n=1B1/n. We claim that µ′2(B) = 0. If µ′2(B) > 0,

then µ′2(B)− εµ1(B) > 0 for some small ε, but B is contained in the negative set Bε.
The uniqueness is easy to show.

Definition 19.4. µ2 is said to be absolutely continuous with respect to µ1( denoted
µ2 << µ1) if for any A with µ1(A) = 0, µ2(A) = 0.

Theorem 39 (Radon-Nikodym Theorem)

Suppose µ, ν are σ-finite measures and ν is absolutely continuous with respect to µ,
then there is a h ≥ 0, so that ν(E) =

∫
E h dµ.

Proof. By the Lebesgue decomposition, µ2 = µa2 + µs2, but µ2 << µ1, µs2 = 0. It’s easy
to check the uniqueness of h almost surely.

§19.2 Conditional Expectation

Definition 19.5. Suppose we have (Ω,Σ, P ) and a random measurable variable X with
E|X| < ∞. Let F ⊂ Σ, another σ-algebra. We define E(X|F) as an F measurable
function with the property that for all S ∈ F ,∫

S
E(X|F)dµ =

∫
S
Xdµ.
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Lemma 19.6

|E(X|F)| is in L1.

Proof. Let A = {E(X|F ) > 0} ∈ F . Then∫
|E(X|F )| =

∫
A
E(X|F )−

∫
Ac
E(X|F ) =

∫
A
X −

∫
Ac
X ≤

∫
|X|.

We first address existence. Assume X ≥ 0. Define a measure µ′ on (Ω,F) where
µ′(E) =

∫
E X dµ1. We have that µ′ is a measure on (Ω,F). It is easy to check that

µ′ << µ1. By RN, there exists g measurable with µ′(E) =
∫
E g dµ1. The theorem also

shows uniqueness almost surely, so we define E(X|F ) = g.
Now we handle uniqueness. Suppose h1, h2 are two versions of E(X|F ). Then∫

E
h1 =

∫
E
h2 =

∫
E
X

and
∫
h1 − h2 = 0, so h1 = h2 almost surely.

Some facts about conditional expectations:

• Suppose B ∈ F and X1 = X2 on B. Then E(X1|F ) = E(X2|F ) almost surely on
B.

• Linearity: X,Y ∈ Σ, then E(aY + bY |F ) = aE(X|F ) + bE(Y |S) almost surely.

• Monotonicity: X ≤ Y implies that E(X|F ) ≤ E(Y |F ) almost surely.

• Xn ≥ 0 and Xn ↑ X, E(X) < ∞ then E(Xn|F ) ↑ E(X|F ). Then, we adapt the
proof of MCT to prove this.
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§20 November 3rd, 2020

§20.1 Properties of Conditional Expectations

We have a mapping (Ω,Σ, P )
X−→ (R, B(R)), and a subsigma algebra F so that E(X|F)

is the F-measurable function such that∫
E(X|F) =

∫
A
X

for all A ∈ F .

Remark 20.1. In a sense, this corresponds to the maximum information of X given the
subsigma algebra F .

Exercise 20.2. State and prove versions of Fatou’s Lemma, MCT, and DCT for condi-
tional expectation.

Theorem 40 (Jensen’s Inequality)

Let φ be a convex function and X a random variable so that E|X|, E|φ(X)| <∞.
Then

φ(E(X|F)) ≥ φ(E(X|G)) almost surely.

Theorem 41 (Tower Property)

Given G1 ⊂ G2 ⊂ Σ,

E(E(X|G2)|G1) = E(X|G1) almost surely.

Proof. For A ∈ G1,∫
A
E(E(X|G2)|G1) =

∫
A
E(X|G2) =

∫
A
X =

∫
A
E(X|G1).

Theorem 42

For G ⊂ Σ, X is a random variable that is independent of G, which means that G
and Σ(X) are independent as subsigma algebras of Σ. Then

E(X|G) = E(X), a.s.

Proof. For two random variables Y, S independent, E(Y Z) = E(Y )E(Z). Then∫
A
E(X|G) =

∫
A
X =

∫
X1A = E(X)P (A) =

∫
A
E(X).
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Theorem 43

Suppose X,Y are random variables with Y G-measurable with E|X| < ∞ and
E|XY | <∞. Then E(XY |G) = Y E(X|G).

Proof. Take Y = 1B with B ∈ G. Then E(X1B|G) = 1BE(X|G). Then∫
A
E(X1B|G) =

∫
A
X1B =

∫
A∩B

X =

∫
A
E(X|G)1B.

Theorem 44

Suppose X ∈ L2. If we take G ⊂ Σ and Y to be a G measurable function in L2.
Then E((X − Y )2) ≥ E((X − E(X|G))2).

Remark 20.3. The geometric interpretation of this result is that E(X|G) is the projection
of X onto L2(G).

§20.2 Regular Conditional Probabilities

We will call P (A|G) = E(1A|G). For any A1, A2, . . . disjoint,

P (
⋃
Ai|G) =

∑
P (AiG), a.s.

by applying MCT for conditionals to the function
∑n

i=1 1Ai . However, one can face
issues to ensure the almost surely condition holds simultaneously for all such families of
sets. This is because the nullsets can depend on the set system {Ai}, which means for
no ω ∈ Ω, we can expect P (

⋃
Ai|G) =

∑n
i=1 P (Ai|G) for all sets Ai.

Definition 20.4 (Regular Conditional Probability). . If we have f : Ω×B(R), for all
A ∈ B(R),

f(·, A) : Ω→ [0, 1]

is a version of P (A|G) and almost surely, f(ω, ·) is a probability measure.

Remark 20.5. These only exist in the case of ”nice spaces”, namely Polish spaces. The
key thing that make the construction possible is the separability.

§20.3 Martingales

We have a stochastic process X1, X2, . . . , Xn, . . . measurable random variables with
E|Xn| <∞ for all n.

Definition 20.6. A filtration is a sequence of Σ-algebras,

F0 ⊆ F1 ⊆ · · · ⊂ Σ.

We assume Xn is Fn-measurable. Since Xn is in L1, we discuss E(Xn|Fm) for m < n.
If m ≥ n then E(Xn|Fm) = Xn almost surely.
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Definition 20.7. A process H1, H2, . . . is predictable if Hn is Fn−1 measurable.

Definition 20.8. Suppose {Xn} is Fn adapted. Then Xn is a martingale if for all n,
E(Xn|Fn−1) = Xn−1 almost surely.

Example 20.9 (Linear Martingale)

Suppose Zi are all iid Ber(±1). Then Xn =
∑n

i=1 Zi, Fn = σ(Z1, . . . , Zn).

E(Xn|Fn−1) = E(Zn +Xn−1|Fn−1) = Xn−1 + E(Zn|Fn−1) = Xn−1.

Definition 20.10. A submartingale is when E(Xn|Fn−1) ≥ Xn−1 almost surely, and a
supermartingale is when E(Xn|Fn−1) ≤ Xn−1 almost surely.

Example 20.11 (Exponential Martingale)

If Xn are iid, E(Xn) = 1. Mn =
∏n
i=1Xi is a martingale.

Theorem 45

Given a martingale Xn, we can generate a new martingale using predictable processes.
Suppose Hi predictable Xn is a martingale. Then

Yn =
n∑
i=1

Hn(Xn −Xn−1)

is a martingale.

Proof. Note that Yn is Fn-adapted since Xn, Hn are Fn-adapted. Then

E(Yn|Fn−1) = E(

n−1∑
i=1

Hi(Xi −Xi−1) +Hn(Xn −Xn−1)|Fn−1)

= Yn + E(Hn(Xn −Xn−1)|Fn−1)

= Yn.
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§21 November 5th, 2020

§21.1 Martingales, Continued

Recall the setting: we have a filtration F1 ⊆ · · · ⊆ Fn and Xn adapted to (Fn) in L1 if
E(Xn|Fn−1) = Xn−1 almost surely. We can extend this to E(Xn|Fm) = Xm for m ≤ n
by iteratively using the tower property.

Example 21.1

A simple random walk Sn =
∑n

i=1Xi, where Xi are iid Ber(±1), is a martingale. If
we change Xi ∼ Ber(p), then it becomes a submartingale because the mean of each
entry is strictly positive.

§21.2 Predictable Sequences

Definition 21.2. A sequence Hn ∈ Fn−1 is called predictable.

Given a martingale sequence Xn and a predictable process Hn, we showed that the
process Mn =

∑n
i=1Hi(Xi −Xi−1) was a martingale, where M0 = 0.

Proposition 21.3

Suppose Xn is a submartingale. Define Mn =
∑n

i=1Hi(Xi −Xi−1). If Hn ≥ 0 and
is predictable, then Mn is a submartingale.

Proof.

E(Mn|Fn−1) = Mn−1 + E(Hn(Xn −Xn−1)|Fn)

= Mn−1 +HnE(Xn −Xn−1|Fn)

≥Mn−1.

§21.3 Stopping Times

Definition 21.4. A stopping time τ is a random variable from (Ω,Σ,P)→ N ∪∞ such
that the event {τ ≤ n} is Fn measurable.

Remark 21.5. Given the filtration, then we should be able to consider the information up
to time n to determine whether {τ ≤ n} is measurable.

Example 21.6

Consider the symmetric random walk Sn =
∑
Xi which are iid Ber(±1). Let

Fn = σ(X1, X2, . . . , Xn). We can pick the stopping time τ0 as the minimum time so
that Sn = 0.

In general, if we look at the last hitting time: τ̂ , the max n so that Sn = 0 is not
a stopping time since we would need to consider all the noise in the future as well.
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Theorem 46

Suppose Xn is a martingale and τ is a stopping time. The process Zn = Xn∧τ is a
martingale.

Proof. The strategy is to show that Zn is a transform of Xn. To do this, we have to
construct a predictable process Hn such that (H ·X) = Z. Define Hn = 1{τ ≥ n}.

Then,
n∑
i=1

Hi(Xi −Xi−1) = Xn∧τ −X0.

Hi is predictable since τ is a stopping time, and Hi = 1Z≥i = 1− 1{Z ≤ i− 1}, which
is Fi−1 measurable. Hence Xn is a martingale so Xn∧τ −M0 is a martingale, so Xn∧τ is
a martingale.

Remark 21.7. Observe that the same holds for submartingales and supermartingales.

§21.4 Expectation for Stopped Martingales

Lemma 21.8

If τ1 ≤ τ2 almost surely for two stopping times, then E(Xn∧τ1) ≤ E(Xn∧τ2) for a
submartingale Xn.

Proof. It suffices to show that E(Xn∧τ1) ≤ E(Xn). It τ1 ≥ n, the result is clear.
We saw that H is a predictable sequence and Mn = Xn∧τ − X0 = (H · X). Call

Zn = (1−H) ·X, which is also a submartingale.
Then Zn +Mn = Xn −X0 is a submartingale, so E(Zn) ≥ 0 for all n. Finally,

E(Zn) + E(Mn) = E(Xn)− E(X0) =⇒ E(Mn) ≤ E(Xn)− E(X0)

but E(Mn) = E(Xn∧τ )− E(X0), so it follows that E(Xn∧τ ) ≤ E(Xn).
Define Zn = Xn∧τ2 . We know that Zn is a submartingale. Then E(Zn∧τ1) ≤ E(Zn) =

E(Xn∧τ2).

Remark 21.9. The same argument shows that if Xn is a martingale, then E(Xn∧τ ) =
E(Xn) = E(X0) for all n and stopping times τ . However, it does not follow generally that
E(Xτ ) = E(X0).

Example 21.10

Let S0 = 1, Si = 1 +
∑n

i=1Xi, for Xi ∼ Ber(±1). Take τ = min{n : Sn = 0}. One
can show that τ <∞ almost surely. However, S0 = 1, ESτ = 0.

§21.5 Convex Functions and Martingales

The following theorem will prove to be useful.
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Theorem 47

Suppose φ is a convex function and Xn is a martingale. Then φ(Xn) is a submartin-
gale.

Proof. This follows from the conditional Jensen’s inequality.

E(φ(Xn)|Fn−1) ≥ φ(E(Xn|Fn−1)) = φ(Xn−1).

The above also works in Xn is a submartingale and φ is increasing as well.

We often choose φ(X) = X+ or φ(X) = (X − a)+.

Theorem 48 (Doob’s Maximal Inequality)

Suppose Xn is a submartingale, Then for any a > 0,

P ( max
0≤k≤n

Xk ≥ a) ≤ E(X+
n )

a
.

Proof. Define τ to be the stopping time, {inf0≤k≤nXk ≥ a}. We know that Xk∧τ is a
submartingale so E(Xn∧τ ) ≤ E(Xn). The LHS can be decomposed in E(Xn∧τ1τ≤n) +
E(Xn∧τ1τ>n), and

E(Xn∧τ1τ>n) = E(Xn1τ>n),

so it follows that

E(Xn∧τ1τ≤n) ≤ E(Xn)− E(Xn1τ>n) = E(Xn1τ≤n) ≤ E(X+
n ).

On the other hand,

E(Xn∧τ1τ≤n) = E(Xτ1τ≤n) ≥ aP (τ ≤ n),

so it follows that
aP (τ ≤ n) ≤ E(X+

n ),

which gives the result.

Remark 21.11. Recall the Kolmogorov Maximal Inequality, Xi are iid mean 0, EX2
i <∞,

Sk =
∑k
i=1Xi. Then

P ( max
0≤k≤n

|Sk| ≥ x) ≤ V ar(Sn)/x2.

This is a corollary of Doob’s by considering the submartingale Mn = S2
n.
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§22 November 10th, 2020

§22.1 Convergence of Martingales

Recall Doob’s inequality: If Xn is a sub-martingale, then

P ( sup
0≤k≤n

Xk > x) ≤ E(X+
n )/x.

We begin by proving the upcrossing inequality:

Theorem 49 (Upcrossing Inequality)

Suppose Xn is a sub-martingale. Pick a ≤ b. Define τ0 : inf t : Xt ≤ a, τ1 : inf t ≥
τ0, Xt ≥ b, . . . . Each of τ0 → τ1, τ2 → τ3, . . . is an upcrossing. Let N(a, b, n) be the
number of crossings up to time n.

E(N(a, b, n)) ≤ E((Xn − a)+)− E((X0 − a)+)

b− a
.

Proof. Consider the sub-martingale Mn = (Xn − a)+ + a, since f(x) = (x− a)+ + a is
convex and increasing.

Define the predictable process

Hk = 1τ0<k≤τ1 + 1τ2<k≤τ3 + . . . .

We know that H ·M is a sub-martingale. Mn −M0 = H ·M + (1 − H) ·M is a
submartingale so

E(Mn −M0) ≥ E(H ·M).

We know that

E((Xn − a)+ − E(X0 − a)+) ≥ H ·M ≥ (b− a)N(a, b, n) + some correction.

Theorem 50 (Martingale Convergence Theorem)

If Xn is a submartingale with supEX+ <∞, then as n→∞, Xn converges almost
surely to a limit X with E|X| <∞.

Proof. Fix a < b. Then

E(N(a, b, n)) ≤ E((Xn − a)+)

b− a
≤ E(X+

n + |a|)
b− a

.

Then E(N(a, b,∞)) <∞ since E(X+) <∞ uniformly in n. Now, choosing a < b ∈ Q,
one can ensure almost surely that

N(q1, q2,∞) <∞

for all q1 < q2 ∈ Q. It follows that⋂
a,b∈Q

{N(a, b,∞) <∞}
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is probability 1, so it implies that Xn has a limit. We show that lim supXn = lim inf Xn.
If not, one can find

lim inf X1 < q1 < q2 < lim supXn.

This implies that we have infinitely many crossing between lim inf Xn and lim supXn

and hence between q1, q2, which is a contradiction.
Finally, we show E|X| < ∞. EX+ < ∞ and Xn → X so X+

n → X+
n . By Fatou’s

Lemma, EX+ ≤ lim inf E(X+
n ) <∞. Then,

supE(X−n ) = supE(X+
n )− E(Xn) ≤ supE(X+

n )− E(X0) <∞.

Using Fatou’s lemma again shows that EX−n <∞, so we have E|X| <∞.

Corollary 22.1

If Xn ≥ 0 is a supermartingale, then Xn → X almost surely so that E|X| <∞.

Proof. Yn = −Xn is a sub-martingale and Y +
n = 0 so EY +

n = 0. Hence supE(Y +
n ) <∞.

The previous result shows that Yn → Z ∈ L1 almost surely so Xn → −Z.

§22.2 Martingales with Bounded Increments

Theorem 51

Suppose Xn is a martingale sequence satisfying |Xn −Xn−1| < K almost surely for
all n. Then, define

A = {Xn converges}, B = {lim supXn =∞, lim inf Xn = −∞}.

Then P (A ∪B) = 1.

Proof. Let τ = inf{t : Xt ≥ M}. WLOG take X0 = 0, since Xn −X0 is a martingale.
Define Yn = Xτ∧n, which is a martingale. Then Y +

n ≤M +K so EY +
n ≤M +K for all

n. By the Martingale Convergence Theorem, Yn converges almost surely implies that Xn

converges on the event τ =∞. Sending M to infinity,

∞⋂
M=1

{Yn converges}.

It follows that Xn converges on the event
⋃∞
m=1{τm =∞}. Equivalently, lim supXn <∞.

On the event lim supXn <∞, Xn converges. Because Xn is a martingale, we can work
with −Xn to conclude Xn converges on the event {lim inf Xn > −∞}. So either Xn

converges, or lim supXn =∞ and lim inf Xn = −∞.

§22.3 Lp inequalities

Theorem 52

If we have submartingale sequence Xn and E|Xn|P < ∞ for 1 < p < ∞ for all n
then

E( max
0≤k≤n

X+
k )p ≤

(
p

p− 1

)p
E((X+

n )p).
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Remark 22.2. The statement is false for p = 1.

Proof. Let Yn = max0≤k≤nX
+
k . By Doob’s Maximal inequality, P (Yn > λ) ≤ E(X+

n 1Yn > λ)/λ,
so it follows that

E(Y p
n ) =

∫
pλp−1P (Yn > λ)dλ

≤
∫
pλp−2E(X+

n 1Yn>λ)

=

∫
pλp−2

∫
X+
n 1Yn>∞

= p

∫
X+
n

∫ Yn

0
λp−2

=
p

p− 1

∫
X+
n (Yn)p−1.

By Holder’s inequality,

E(Y p
n ) ≤ p

p− 1
E(X+

n Y
p−1
n ) ≤ p

p− 1
E((X+

n )p)1/pE(Y p
n )(p−1)/p.

Dividing by both sides,

E(Y p
n ) ≤

(
p

p− 1

)p
E((X+

n )p).

However, E(Y p
n ) could be infinite. To fix this, one can show by truncation the same

inequality holds for the truncated version,

E(|Yn ∧M |p) ≤
(

p

p− 1

)p
E(X+

n )p.

Taking M →∞ and applying the monotone convergence theorem gives the result.
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§23 November 12th, 2020

§23.1 Lp Inequalities, continued

Last time, we used Doob’s Maximal Inequality to show that

E(|max
i≤n

X+
i |

[) ≤
(

p

p− 1

)p
E|Xn|p.

Example 23.1 (Counterexample for p = 1)

Take a simple random walk with S0 = 1, S1 = X1, S2 = X1+X2 where Xi ∼ Ber(±1),
iid. Let τ = inf{t : St = 0}. Sn∧τ is a non-negative martingale.

Then, E(Sn∧τ ) = ES0 = 1. We will show that

P (max
i≤n

Sn∧τ > M) =
1

M
,

so it follows that

E(max
i≤n

Sn∧τ ) ≈
∞∑
m=1

1

m
→∞.

§23.2 Lp Convergence

Theorem 53

Suppose X1, X2, . . . is a martingale sequence with supE(|Xn|p) <∞. Then, there
exists a random variable X so that E|Xn −X|p → 0.

Proof. Xn ∈ Lp implies that Xn ∈ L1 and E(|Xn|)p ≤ E(|Xn|p). So supE|Xn| < ∞
and By Fatou’s lemma, E|X|p ≤ lim inf E(|Xn|p) < ∞, so Xn → X almost surely by
martingale convergence.

Using the Lp maximal inequality, |Xk| is a submartingale so

E(max
k≤n
|Xk|p) ≤ (p/(p− 1))pE(|Xn|p).

Sending n→∞ and using MCT, it follows that

E(sup |Xn|p) <∞.

Finally, Xn → X so |Xn −X| ≤ 2 sup |Xn|. It follows that |Xn −X|p ≤ (2 sup |Xn|)p
and using the dominated convergence theorem, it follows that E|Xn −X|p → 0.

Example 23.2

From our simple random walk from earlier, Sn∧τ ≥ 0 is a martingale so it converges.
We can show that Sn∧τ → 0, since Sn∧τ → X and |Sn+1∧τ − Sn∧τ | = 1 unless
Sn∧τ = 0. But ESn∧τ = 1, so Sn∧τ 6→ 0 in L1 since that implies that ESn∧τ → 0.
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Theorem 54 (Doob’s Decomposition)

Suppose Xn is an Fn adapted submartingale. Then, there exists a unique predictable
non-negative process An with A0 = 0 such that Xn = Mn +An where Mn is an Fn
adapted martingale.

Example 23.3

Take Sn =
∑n

i=1 Zi where Zi ∼ Ber(p). Note that E(Zi) = p so it is a sub-
martingale. We know that Mn =

∑
Zi−p is a martingale since E(Zi−p) = 0. Then

Sn = Mn + np. In this case An = np.

Proof. We have Xn = Mn +An, then E(Xn|Fn−1) = Mn−1 +An = Xn−1 −An−1 +An.
Hence,

E(Xn|Fn−1)−Xn−1 = E(Xn −Xn−1|Fn−1) = An −An−1 ≥ 0,

since Xn is a submartingale. Then, we have A0 = 0 and

An =
n∑

m=1

E(Xm −Xm−1|Fm−1).

An is predictable since it is Fn−1 measurable. Then, Mn = Xn − An. This is a
martingale since

E(Mn|Fn−1) = E(Xn|Fn−1)−An = Xn−1 −An−1 = Mn−1.

§23.3 L1 Convergence, Uniform Integrability

Definition 23.4. Xn is said to be uniformly integrable if given ε > 0, there exists M so
that

E(|Xn|1|Xn|>M ) < ε.

Theorem 55

If Xn is a martingale, then the following are equivalent:

• Xn is UI.

• Xn → X almost surely and in L1 for some X.

• Xn = E(X|Fn).

Proof. Uniform integrability implies that supE|Xn| <∞. By the martingale convergence
theorem, we have X so that Xn → X almost surely and X ∈ L1. Convergence in L1 was
a homework problem(9.5b).

For 2 implies 3, we want to show that Xn → X as, L1 implies that Xn = E(X|Fn). It
suffices to show that ∫

a
AXn =

∫
A
X
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forA ∈ Fn. Notice that
∫
AXn =

∫
AXm form ≥ n by the martingale property(E(Xm|Fn) =

Xn). It follows that

|E(X;A)− E(Xm;A)| ≤ E(|X −Xm|;A) ≤ E|X −Xm| to0.

For 3 implies 1, Xn = E(X|Fn) implies that Xn is a martingale since

E(Xn|Fn−1) = E(E(X|Fn)|Fn−1) = E(X|Fn−1) = Xn−1.

This was a homework problem.

Corollary 23.5

X is a random variable, then Xn = E(X|Fn) is a martingale. We know that Xn → Y
almost surely and in L1. Let F∞ = σ(

⋃∞
n=0Fn). Then, Y = E(X|F∞).

Proof. It suffices to show that E(X;A) = E(Y ;A) for A ∈ F∞. Instead, we show that
E(X;B) = E(Y ;B) for all B ∈

⋃∞
n=0Fn, and use the π − λ theorem.

Take B ∈ Fn. We know that E(X;B) = E(Xn;B) since Xn = E(X|Fn) and
E(Xn;B) = E(Xm;B)→ E(Y ;B) since Xm → Y in L1.

§23.4 Optimal Stopping Theorems

We know that E(X0) = E(Xn∧τ ) since it is a martingale. We want to find conditions so
that E(X0) = E(Xτ ).

Lemma 23.6

If Xn is UI and τ is a stopping time, then Xn = Xn∧τ is UI.

Proof. We start with

E(|Xn|1|Xn|>M ) = E(|Xn|1|Xn|>m1τ>n) + E(|Xτ |1|Xn|>m).

Observe that |Xn| is a submartingale so E|Xn| ≤ E|Xn| since Xn is UI. Then

supE(|Xn|) ≤ supE(|Xn|) <∞,

so it follows that |Xn| → |X|. It follows that both sets in above are sets of small
probability.

From the UI, we can show that E(Xn∧τ ) → E(Xτ ) and E(Xn∧τ ) = E(X0), so
E(Xτ ) = E(X0), as desired.

Other conditions where OST holds:

• Xn is a martingale sequence and Xn−Xn−1 have the property that |Xn−Xn−1| ≤ B
almost surely, and E(τ) <∞.
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§24 November 17th, 2020

§24.1 More Optimal Stopping Conditions

Other conditions where OST holds:

• Xn is a martingale sequence and Xn−Xn−1 have the property that |Xn−Xn−1| ≤ B
almost surely, and E(τ) <∞.

• Xn is a martingale sequence and Xn − Xn−1 have the property that E(|Xn −
Xn−1||Fn−1) ≤ B almost surely, and E(τ) <∞.

Proof. Suppose X0 = 0. We note that Xn =
∑n

i=1Xi −Xi−1, so

Xn∧τ =

τ∑
i=1

Xi = X + i− 1 =
∑

(Xi −Xi−1)1(τ > i− 1).

Finally, |Xn∧τ | ≤
∑
|Xi −Xi−1|1τ>i−1 = A and it follows that∑

E(|Xi−Xi−1|1τ>i−1) =
∑

E(E(|Xi−Xi−1|1τ>i−1|Fi−1)) ≤
∑

E(1t>i−1B) = BEτ,

Remark 24.1. The amount of information is somehow ”encoded” in the moment of the
martingale you take.

Corollary 24.2

Let τ = τ0 and consider S∗ = maxi<τ Si. Then ES∗ =∞.

Proof. We can compute

P (S∗ ≥ n) = P1(τx < τ0) =
1

x− 1 + 1
=

1

x
.

§24.2 Reverse Martingales

For standard X0, X1, . . . and a filtration Fn so that E(Xn|Fn−1) = Xn−1 almost surely.

Definition 24.3. We have F0 ⊃ F1 ⊃ F2 . . . and

E(Xi|Fi+1) = Xi+1

almost surely. We could also write it this as E(X0|Fi) for a decreasing sequence of Σ
algebras F0 ⊃ F1 ⊃ . . . .

Lemma 24.4

If Xi is a reverse martingale, then there exists X with Xi → X almost surely,
Xi → X in L1 and X = E(X0|F∞) where F∞ =

⋂
Fi.

76



Vishal Raman (December 1, 2020) Math 218a

Proof. The proof in the forward direction used the upcrossing lemma: for any q1 < q2

rational, limE(N(q1, q2, n)) <∞ if supEX+
n <∞.

Fixing some n and going from n→ 0 gives a forward martingale. Then if N ′(q1, q2, n)
is the crossing number,

E(N ′(q1, q2, n)) ≤ E(|X0|+ q1)

q2 − q1
.

Hence, limE(N ′(q1, q2, n)) <∞ almost surely for all q1 < q2 ∈ Q. It follows that Xi has
a limit almost surely, which we will call X. For L1 convergence, it suffices to show UI.
Each Xi = E(X0|Fi), so it follows that this is uniformly integrable.

Finally, X = limXi and hence ∩Fi measurable. Take B ∈ F∞. It suffices to show that∫
B
X =

∫
B
X0,

which follows from the fact that B ∈ F∞ ⊂ Fi for all i and E(Xi;B)→ E(X;B).

§24.3 Applications of Reverse Martingales

Definition 24.5. Let En = Σ(A : A is invariant under permutation of the first n coordinates).
This means that for ω ∈ A, we have σω ∈ A for σ ∈ Sn. Then E =

⋂
En.

Theorem 56 (Hewitt-Savage 0-1 Law)

If X0, X1, X2, . . . iid and A ∈ E then P (A) ∈ {0, 1}.

Proof. We want to show that E is independent of itself. Fix some K and some bounded
function φ : Rk → R. We show this is independent of E . This would imply that
E is independent of E since we can take φ as indicators so that Σ(X1, X2, . . . , Xk) is
independent of E . Then

⋃∞
k=1 Σ(X1, . . . , Xk) is independent of E , which is a π-system,

so it follows that Σ(X1, X2, . . . ) is independent of E . But E is a subsigma algebra of the
former.

The first step is to symmetrize φ(x1, x2, . . . , xk): define

An(φ) =
1

(n)k

∑
i

φ(Xi1 , Xi2 , . . . , Xi,k).

Note that An(φ) is Sn invariant. Furthermore, An(φ) is En measurable and

Anφ = E(Anφ|En) =
1

(n)k

∑
E(φ(Xi1 , . . . , Xik)|En).

Since En is Sn invariant, it follows that

E(φ(Xi1 , Xi2 , . . . , Xik)|En) = E(φ(X1, X2, . . . , Xk)|En).

Hence, we have that
Anφ = E(φ(X1, X2, . . . , Xk)|En).

This is a reverse martingale since En ↓ En. Hence

Anφ→ E(φ(X1, X2, . . . , Xk)|E).

It suffices to show that E(φ(X1, X2, . . . , Xk)|E) = E(φ(X1, X2, . . . , Xk)).
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Lemma 24.6

If EX2 <∞, E(X|G) ∈ F with X independent of F , then E(X|G) = E(X).

Proof.
E(E(X|G)X) = E(E(X|G)2) = E(X2).

It follows that
E(E(X|G)2) = E(X2),

so Jensen’s inequality is sharp for the convex function x 7→ x2.

We know that Anφ→ E(φ(X1, X2, . . . , Xk)|E). We prove that Anφ is independent of
X1. All the terms in Anφ not containing X1 is independent of X1 and is measurable
with respect to Σ(X2, . . . ). Then An(φ) = o(1/n) +A′n(φ) independent of X1, and the
error goes to 0. Repeating this for the other k terms gives the result.
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§25 November 19th, 2020

§25.1 de Finetti’s Theorem

Definition 25.1. A sequence X1, X2, . . . is exchangeable if for each n and π ∈ Sn

(X1, X2, . . . , Xn) = (Xπ(1), Xπ(2), . . . , Xπ(n))

in distribution.

Example 25.2

IID sequences are obviously exchangable. Another example: fix a random θ ∈
[0, 1] uniform and consider Ber(θ), iid. Each Xi ∼ Ber(1/2). But E(X1, X2) =
Eθ(E(X1, X2|θ)) = E(θ2) = 1

3 .

Theorem 25.3

This is the only example of exchangeable sequences. That is, given X1, X2, . . . and
the exchangeable sigma algebra E , the distribution of (X1, X2, . . . ) given E is iid.

Proof. That the distribution of Xi, Xj given E are the same follows that E(φ(Xi)|E) =
E(φ(Xj)|E) for all i, j(by the change of measure formula). It suffices to show that for
any f, g,

E(f(Xi)g(Xj)|E) = E(f(Xi)|E)E(g(Xj)|E)

If will be enough to show for any f : Rk → R and g : R→ R,

E(f(X1, X2, . . . , Xk)g(Xk+1)|E) = E(f(X1, . . . , Xk)|E)E(g(Xk+1|E)

§25.2 Symmetric and Asymmetric Random Walks

Let ξ1, ξ2, . . . be iid and let Sn = S0 +
∑n

i=1 ξi. Taking Fn = σ(ξ1, . . . , ξn), we have some
martingales Xn = Sn−nEξi the linear martingale. For Eξ = 0, we have Xn = S2

n−nEX2
i ,

the quadratic martingale.
Consider the Symmetric simple random walk with P (ξi = 1) = P (ξi = −1) = 1/2. We

compute the moment generating function E(sτ1) for s < 1. We have that E(τ1) = ∞.
We compute this using exponential martingales.

For θ, let φ(θ) = E(eθX1) where Xi ∼ Ber(±1). This is φ(θ) = eθ+eθ

2 ≥ 1. Mn = eθSn

φ(θ)n

is a martingale since

E(Mn|Fn−1) =
eθSn−1

φ(θ)n−1

eθXn

φ(θ)
,

so

Mn = Mn−1
eθXn

φ(θ)
.

Consider Mn = Mn∧τ for τ = τ1. Note that 0 ≤Mn ≤ eθ. We know that E1 = (M0) =
E(Mn) and by BCT, E(Mn) = E(Mτ ). Therefore,

E(Mτ ) = 1 = EθE(φ(θ)−τ ).
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Now, we set s = φ(θ)−1. Letting x = etheta and doing some algebra, we find that
x2 + 1− 2/sx = 0, so it follows that

x =
2±
√

4− 4s2

2s
=

1±
√

1− s2

s
.

It follows that

E(sτ ) =
1

x
=

1−
√

1− s2

s
.
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§26 November 24th, 2020

§26.1 Random Walks, Continued

For the simple random walk, we found the associated hitting time between a, b using the
martingale Sn =

∑n
i=1 xi.

In the asymmetric case, the closest martingale is Sn− (2p−1)n. The idea is to consider

exponential martingales: Let Mn =
(

1−p
p

)Sn
. It is easy to check that Mn is a martingale.

Consider the stopping time for τ = τ{−a,b}. The optional stopping theorem(if applicable)
is E(Mτ ) = E(M0). Notably, we can find similar expressions such as

P (τ−a < τb).

If we let φ(y) = [(1− p)/p]y, then φ(0) = φ(b)(1− q) + φ(−a)q, so it follows that

q = P (τ−a < τb) =
φ(b)− φ(0)

φ(b)− φ(−a)
.

Finally, note that the optimal stopping theorem is applicable since τ ∧ n is a bounded
stopping time and EMτ ≤ EMτ∧n, we can apply BCT.

Proposition 26.1

P (τb <∞) = 1, P (τ−a <∞) < 1.

Proof. Note that

1− q =
φ(0)− φ(−a)

φ(b)− φ(−a)
=

1− ((1− p)/p)−a

((1− p)/p)b − ((1− p)/p)−a
.

Then
P (τb <∞) = lim

a→∞
P (τb < τ−a) = 1.

For the other conclusion, we send b→∞, and φ(b)→ 0, so

P (τ−a =∞) = 1−
(

1− p
p

)−a
.

To find E(τb), note that Sn− (2p− 1)n is a martingale. By OST, 0 = E(Sτ∧n)− (2p−
1)E(τ ∧ n), so it follows that

E(τ ∧ n) =
1

2p− 1
E(Sτ∧n) ≤ b

2p− 1
.

By MCT, τ ∧ n ↑ τ , so it follows that E(τ ∧ n) ↑ E(τ) ≤ b
2p−1 , if we apply OST.

We can apply DCT since
|Sτ∧n| ≤ b+ | inf Sn|

and P (inf Sn ≤ −a) = P (τ−a <∞) = (1−p)a
pa . Hence,

E(| inf Sn|) ≤
∞∑
a=1

P (τ−a <∞) =

∞∑
a=1

(
1− p
p

)a
=

1

1−
(

1−p
p

)a .
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§26.2 Combinatorics of SRW

We consider simple random walks.

Theorem 57 (Reflection Principle)

Let x, y > 0. The number of paths from (0, x) to (n, y) that are 0 at some time is
equal to the number of paths from (0,−x) to (n, y).

For any path as above, reflecting the path about the x-axis until the first hitting time
of 0 creates a bijection to the set of paths from (0,−x) → (n, y). The inverse map is
exactly reflecting back.

Theorem 58 (Ballot Theorem)

Suppose A and B get α, β votes each with α > β. The probability that throughout
the vote counting process A is ahead of B is α−β

α+β .

Proof. Let Vt(A) be the number of votes A has got after the first t votes. Similarly for
B. Note that Vt(A) + Vt(B) = t. We want to consider Vt(A) − Vt(B), specifically the
paths that never hit the x-axis.

Let n = α+ β, x = α− β. Let Nk,r be the number of paths from 0 to r in k steps.
We claim that the number of desired paths is

Nn−1,x−1 −Nn−1,x−1 =
α− β
α+ β

Exercise 26.2. Prove this result using the reflection principle.

Lemma 26.3

P (S1 6= 0, S2 6= 0, . . . , S2n 6= 0) = P (S2n = 0).

Proof.

P (S1 > 0, . . . , S2n > 0) =
∞∑
r=1

P (S1 > 0, . . . , S2n−1 > 0, S2n = 2r).

The probability is exactly

N2n−1,2r−1 −N2n−1,2r+1

2n− 1
.

If we let pn,x = P (Sn = x), then

∞∑
r=1

P (S1 > 0, . . . , S2n−1 > 0, S2n = 2r) =
1

2

∞∑
r=1

(p2n−1,2r−1−p2n−1,2r+1) =
1

2
p2n−1,1 =

1

2
P (S2n = 0).

By symmetry, the probability each are less than 0 is 1
2P (S2n = 0), so it follows that the

probability is P (S2n = 0), as desired.
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Then,

P (S2n = 0) =

(
2n

n

)
1

22n

and using the Stirling Approximation it follows that

P (S2n = 0) ∼ 1√
n
.

Lemma 26.4

P (τ = 2n) = P (τ > 2n − 2) − P (τ > 2n) = P (S2n−2) − P (S2n = 0) ∼ n−3/2,
plugging in the result from above.

Theorem 26.5 (Arcsin law)

Let π2n be the number of edges that are above the x-axis. Let um = P (Sm = 0).
Then P (π2n = 2k) = u2ku2n−2k.
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§27 December 1st, 2020

§27.1 Combinatorics of Simple Random Walks
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