Notes on Homology

Vishal Raman

March 10, 2021
Abstract
A list of definitions and theorems in preparation for my Algebraic Topology midterm. This roughly covers Hatcher, Ch. 2: Homology, with an emphasis on the material from 2.1, 2.2, and 2.B. Any typos and mistakes are my own - kindly direct them to my inbox.

Contents

1 Simplicial and Singular Homology 2
1.1 Simplicial Complexes 2
1.2 Simplicial Homology 2
1.3 Singular Homology 3
1.4 Homotopy Invariance 3
2 Computations and Applications 5
2.1 Exact Sequences and Excision 5
2.2 Degree 6
2.3 CW-Complexes 6
2.4 Cellular Homology 7
2.5 Euler Characteristic 7

1 Simplicial and Singular Homology

1.1 Simplicial Complexes

Definition 1.1 (Simplex). The n-simplex(denoted Δ^{n}) is given by the convex hull of $n+1$ linearly independent vectors in \mathbb{R}^{n+1} : given $e_{0}, \ldots, e_{n} \in \mathbb{R}^{n+1}$,

$$
\Delta^{n}=\left\{\sum_{i=0}^{n} \lambda_{i} e_{i}: \lambda_{i} \in[0,1], \sum_{i=0}^{n} \lambda_{i}=1\right\}
$$

We also denote $\Delta^{n}=\left[e_{0}, \ldots, e_{n}\right]$.
Definition 1.2 (Face). A face of a simplex $\left[v_{0}, \ldots, v_{n}\right]$ is given by the convex hull of the remaining vectors upon removing one of them. We denote this $\left[v_{0}, \ldots, \widehat{v_{i}}, \ldots, v_{n}\right]$, where v_{i} is the vector that is removed.

Definition 1.3 (Simplicial Complex). Let V be a finite (nonempty) set. A nonempty subset $S \subset \mathcal{P}(V)$ is a simplicial complex if $\bigcup S=V$ and $A \in S, B \subset A$ implies that $B \in S$.

1.2 Simplicial Homology

Definition 1.4. Let S be a simplicial complex. Define

$$
C_{n}(S)=\left\{\sum_{i \in I} n_{i} A_{i}: A_{i} \in S,\left|A_{i}\right|=n+1, n_{i} \in \mathbb{Z}\right\} .
$$

The elements of $C_{n}(S)$ are called n-chains.
Definition 1.5. We define the boundary homomorphisms, $\partial_{n}: C_{n+1}(S) \rightarrow C_{n}(S)$ given by

$$
\partial_{n}(A)=\sum_{j=0}^{n}(-1)^{j}\left[v_{i_{0}}, \ldots, \widehat{v_{i_{j}}}, \ldots, v_{i_{n+1}}\right]
$$

where $A \in S,|A|=n+2$ and $A=\left[v_{i_{0}}, \ldots, v_{i_{n+1}}\right]$.
Lemma 1.6. $\partial_{n-1} \circ \partial_{n} \equiv 0$.
Definition 1.7 (Cycles and Boundaries). The cycles and boundaries of $C_{n}(S)$ are given by the subgroups $Z_{n}(S)=\operatorname{ker} \partial_{n-1}$ and $B_{n}(S)=\operatorname{im} \partial_{n}$, respectively.

Definition 1.8 (Simplicial Homology). We define the n-th simplicial homology group of S as $H_{n}(S)=Z_{n}(S) / B_{n}(S)$.

1.3 Singular Homology

We consider a topological space X.
Definition 1.9 (Singular Simplex). A continuous map $\sigma: \Delta^{n} \rightarrow X$ is a singular simplex.
Definition 1.10 (Singular Chains). We define $C_{n}(X)$ to be the free group generated by n-simplices:

$$
C_{n}(X)=\left\{\sum_{i \in I} n_{i} \sigma_{i}: n_{i} \in \mathbb{Z}, I \text { finite, } \sigma_{i} \text { is a singular simplex }\right\} .
$$

Definition 1.11 (Boundary Maps). We define $\partial_{n}: C_{n+1}(X) \rightarrow C(X)$ by

$$
\partial_{n}(\sigma)=\left.\sum_{i=0}^{n+1}(-1)^{i} \sigma\right|_{\left[e_{0}, \ldots, \widehat{e}_{i}, \ldots, e_{n+1}\right]}
$$

where we have a canonical identification of $\left[e_{0}, \ldots, \widehat{e}_{i}, \ldots, e_{n+1}\right]$ with Δ^{n-1} preserving the order of the vertices.

Definition 1.12 (Cycles and Boundaries). As before $Z_{n}(X)=\operatorname{ker} \partial_{n-1}, B_{n}(X)=\operatorname{im} \partial_{n}$.
Lemma 1.13. $\partial_{n-1} \circ \partial_{n}: C_{n+1}(X) \rightarrow C_{n-1}(X)=0$.
Definition 1.14 (Singular Homology). $H_{n}(X ; \mathbb{Z})=Z_{n}(X ; \mathbb{Z}) / B_{n}(X ; \mathbb{Z})$.
Proposition 1.15. If X is decomposed into its path-connected components X_{α}, there is an isomorphism of $H_{n}(X)$ with $\bigoplus_{\alpha} H_{n}\left(X_{\alpha}\right)$.

Proposition 1.16. If X is a nonempty path-connected topological space, then $H_{0}(X) \cong \mathbb{Z}$.
Proposition 1.17. If $X=\{p t\}$, then $H_{n}(X)=0$ for $n>0$ and $H_{0}(X)=\mathbb{Z}$.
Definition 1.18 (Reduced Homology). Define the map $\epsilon: C_{0}(X) \rightarrow \mathbb{Z}$ by $\sum_{i} n_{i} \sigma_{i} \mapsto \sum_{i} n_{i}$. Using the sequence

$$
\cdots \xrightarrow{\partial_{n}} C_{n}(X ; \mathbb{Z}) \xrightarrow{\partial_{n-1}} \cdots \rightarrow C_{0}(X ; \mathbb{Z}) \xrightarrow{\epsilon} \mathbb{Z}
$$

and taking homologies, we obtain the reduced homology groups $\tilde{H}_{i}(X ; \mathbb{Z})$.

1.4 Homotopy Invariance

Definition 1.19 (Chain complex). Let C be an abelian group and $\partial \in \operatorname{End}(C)$. The pair (C, ∂) is a chain complex if $\partial^{2}=\partial \circ \partial=0$. The homology of a chain complex is given by $H(C, \partial)=\operatorname{ker} \partial / \operatorname{im} \partial$.

Definition 1.20 (Gradings). A graded group A can be decomposed as $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$. A homomorphism $f: A \rightarrow B$ is graded if $f\left(A_{n}\right) \subset B_{n}$. A chain complex (C, ∂) is graded if C and ∂ are graded.

Definition 1.21 (Chain Map). Suppose $\left(C, \partial_{C}\right),\left(D, \partial_{D}\right)$ are two chain complexes. A homomorphism $f: C \rightarrow D$ is a chain map if $\partial_{D} \circ f=f \circ \partial_{C}$.

Proposition 1.22. A chain map between chain complexes induces a homomorphism between the homology groups of the two complexes, denoted by $f_{*}: H\left(C, \partial_{C}\right) \rightarrow H(D, \partial D)$ given by $[c] \mapsto[f(c)]$. We also denote this functorially as $H(f)$.

Some basic properties:

- If $f: X \rightarrow Y, g: Y \rightarrow Z$, then $(g \circ f)_{*}=g_{*} \circ f_{*}$.
- $\left(\mathrm{id}_{X}\right)_{*}=\mathrm{id}_{H(X)}$.

Definition 1.23 (Chain Homotopy). Two graded chain maps $f, g: C \rightarrow D$ are said to be chain homotopic if there exists a homomorphism $\varphi=\bigoplus\left(\varphi_{n}: C_{n} \rightarrow D_{n+1}\right)$ satisfying $f-g=\partial_{D} \circ \varphi+\varphi \circ \partial_{C}$.

Proposition 1.24. If f and g are chain homotopic, then $H(f)=H(g)$.
Proposition 1.25. If X and Y are topological spaces and $f: X \rightarrow Y$ is a continuous map, then it induces a chain map $f_{\sharp}=C_{n}(X) \rightarrow C_{n}(Y)$, defined by $f_{\sharp}(\sigma)=f \circ \sigma$ where $\sigma: \Delta^{n} \rightarrow X$ is a generator of $C_{n}(X)$.

Corollary 1.26. If $f: X \rightarrow Y$ is a homeomorphism, then $f_{*}: H(X) \rightarrow H(Y)$ is an isomorphism.

Definition 1.27. Two maps $f, g: X \rightarrow Y$ are said to be homotopic if there exists a continuous map $F: X \times[0,1] \rightarrow Y$ such that $\left.F\right|_{X \times\{0\}}=f$ and $\left.F\right|_{X \times\{1\}}=y$.

Definition 1.28 (Homotopy Equivalence). A map $f: X \rightarrow Y$ is said to be a homotopy equivalence if there exists $g: Y \rightarrow X$ so that $g \circ f$ is homotopic to id_{X} and $f \circ g$ is homotopic to id_{Y}. If a homotopy equivalence exists between X and Y, then X and Y are homotopy equivalent.

Proposition 1.29. If $f, g: X \rightarrow Y$ are homotopic maps, then $f_{\sharp}, g_{\sharp}: C(X) \rightarrow C(Y)$ are chain homotopic chain maps.

Corollary 1.30. If X and Y are homotopy equivalent topological spaces, then $H_{n}(X) \cong$ $H_{n}(Y)$.

2 Computations and Applications

2.1 Exact Sequences and Excision

Definition 2.1 (Short Exact Sequence). Suppose that L, M, N are abelian groups with the following maps:

$$
0 \rightarrow L \xrightarrow{\alpha} M \xrightarrow{\beta} N \rightarrow 0
$$

The sequence is said to be a short exact sequence if α is a monomorphism, β is an epimorphism, and $\operatorname{ker} \beta=\operatorname{im} \alpha$.

Proposition 2.2. Suppose that L, M, N are graded chain complexes with a short exact sequence

$$
0 \rightarrow L \xrightarrow{\alpha} M \xrightarrow{\beta} N \rightarrow 0
$$

This induces a long exact sequence

$$
\ldots \xrightarrow{\delta_{n}} H_{n}(L) \xrightarrow{H_{n}(\alpha)} H_{n}(M) \xrightarrow{H_{n}(\beta)} H_{n}(N) \xrightarrow{\delta_{n-1}} H_{n-1}(L) \rightarrow \ldots
$$

Remark 2.3. The connecting homomorphisms δ_{n} arise from careful diagram chasing. See the proof in the notes for more details.

Theorem 2.4 (Mayer-Vietoris). Suppose that $X=A \cup B=$ int $A \cup$ int B. There exists a long exact sequence

$$
\ldots \xrightarrow{\delta_{n}} H_{n}(A \cup B) \xrightarrow{f_{n}} H_{n}(A) \oplus H_{n}(B) \xrightarrow[\rightarrow]{g}_{n} H_{n}(X) \stackrel{\delta}{\rightarrow}_{n-1} H_{n-1}(A \cap B) \rightarrow \ldots
$$

Proposition 2.5. For $n>0, H_{i}\left(\mathbb{S}^{n} ; \mathbb{Z}\right)=0$ if $i \neq 0$ or n. Otherwise $H_{0}\left(\mathbb{S}^{n}\right)=H_{n}\left(\mathbb{S}^{n}\right)=\mathbb{Z}$ and the reduced homologies are $\tilde{H}_{*}\left(S^{n}\right)=\mathbb{Z}_{(n)}$.

Corollary 2.6. \mathbb{S}^{n} and \mathbb{S}^{m} are homotopy equivalent if and only if $n=m$.
Corollary 2.7. \mathbb{R}^{n} and \mathbb{R}^{m} are homeomorphic if and only if $n=m$.
Definition 2.8 (Relative Homology). Suppose $A \subset X$ is a pair of topological spaces. Define $C_{n}(X, A)=C_{n}(X) / C_{n}(A)$ with boundary maps $\partial_{(X, A)}: C_{n}(X, A) \rightarrow C_{n-1}(X, A)$ by $\alpha \mapsto \partial_{X}(\alpha)$. This gives a chain complex $\left(C_{n}(X, A), \partial_{(X, A)}\right)$ with corresponding homology $H_{n}(X, A ; \mathbb{Z})$. This also has a long exact sequence induced from

$$
0 \rightarrow C_{n}(A) \rightarrow C_{n}(X) \rightarrow C_{n}(X, A) \rightarrow 0
$$

Theorem 2.9 (Excision Principle). Suppose that $Z \subset A \subset X$ and $\bar{Z} \subset$ int A. Then, the map $i:(X / Z, A / Z) \hookrightarrow(X, A)$ induces an isomorphism $i_{*}: H_{n}(X / Z, A / Z ; \mathbb{Z}) \rightarrow H_{n}(X, A ; \mathbb{Z})$.

2.2 Degree

Definition 2.10 (Degree). Suppose that $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ is a continuous map. The induced map $f_{*}: H_{n}\left(\mathbb{S}^{n}\right) \rightarrow H_{n}\left(\mathbb{S}^{n}\right)$ which are both isomorphic to \mathbb{Z}. Every such map corresponds to multiplication by the integer $f_{*}(1)$, which we define to be the degree of f, denoted $\operatorname{deg} f$.

Some basic properties:

- $\operatorname{deg} i d=1$.
- If f is not surjective, $\operatorname{deg} f=0$.
- If f and g are homotopic, then $\operatorname{deg} f=\operatorname{deg} g$.
- $\operatorname{deg} f g=\operatorname{deg} f \operatorname{deg} g$.
- If f is a reflection, $\operatorname{deg} f=-1$.
- The antipodal map of \mathbb{S}^{n} has degree $(-1)^{n+1}$.
- If $f: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ has no fixed points, then $\operatorname{deg} f=(-1)^{n+1}$.

Proposition 2.11. $\operatorname{deg} f=\left.\sum_{i} \operatorname{deg} f\right|_{x_{i}}$.

2.3 CW-Complexes

Definition 2.12 (CW-Complex). The topological space X is a CW-complex if it can be constructed inductively as follows:

1. Start with X^{0}, a discrete space whose points are regarded as 0 -cells.
2. Inductively form an n-skeleton from X^{n-1} by

$$
X^{n}=\left(X^{n-1} \bigsqcup D_{i} /\left\{x \sim \varphi_{\alpha}(x): x \in \partial D_{\alpha}^{n}\right\}\right)
$$

where D_{α}^{n} are n-discs and $\varphi_{\alpha}: \partial D_{\alpha}^{n} \rightarrow X^{n-1}$ are the gluing maps.
Proposition 2.13. If X is a $C W$-complex, then

- $H_{k}\left(X^{n}, X^{n-1} ; \mathbb{Z}\right) \cong\left\{\begin{array}{l}0 \quad \text { if } k \neq n \\ \mathbb{Z}^{|\{n-c e l l s\}|} \quad \text { if } k=n\end{array}\right.$
- $H_{k}\left(X^{n}\right)=0$ for all $k>n$.
- The embedding $i: X^{n} \hookrightarrow X$ induces an isomorphism $i: H_{k}\left(X^{n}\right) \rightarrow H_{k}(X)$ if $k<n$.

2.4 Cellular Homology

Definition 2.14. A pair of spaces (X, A) is called good if

- A is non-empty and closed.
- there is an open set $B \subset X$ containing A such that A is a deformation retract of B; there is a map $F: B \times[0,1] \rightarrow B$ with $F(b, 0)=b, F(b, 1) \in A$ for $b \in B$ and $F(a, 1)=a$ for $a \in A$.

Theorem 2.15. For a good pair (X, A), the quotient map $q:(X, A) \rightarrow(X / A, A / A)$ induces an isomorphism

$$
H(q): H_{i}(X, A) \rightarrow H_{i}(X / A, A / A) \cong \tilde{H}_{i}(X / A) \forall i
$$

Definition 2.16 (CW-Homology). Define $C_{n}^{C W}(X)=H_{n}\left(X^{n}, X^{n-1} ; \mathbb{Z}\right)$ with boundary map $d_{n-1}: C_{n}^{C W}(X) \rightarrow C_{n-1}^{C W}(X)$ defined by the composition of morphisms in the diagram

$$
H_{n}\left(X^{n}, X^{n-1} ; \mathbb{Z}\right) \stackrel{\delta}{\rightarrow}_{n-1} H_{n-1}\left(X^{n-1} ; \mathbb{Z}\right) \stackrel{\gamma}{\rightarrow}_{n-1} H_{n-1}\left(X^{n-1}, X^{n-2}\right)
$$

where δ_{n-1} is the connecting morphism and γ_{n-1} is the induced by the embedding.
Proposition 2.17. $\left(C_{*}^{C W}(X), d_{*}\right)$ is a chain complex; $d_{n-1} \circ d_{n}=0$.
Proposition 2.18. $H_{*}\left(C_{*}^{C W}, d_{*}\right) \cong H_{*}(X ; \mathbb{Z})$, where the second H_{*} is the singular homology.
Theorem 2.19 (Cellular Boundary Formula). Let X be a $C W$-complex where the n-th skeleton X^{n} is given by $X^{n}=X^{n-1} \cup_{\varphi} \bigcup_{\alpha \in A} e_{\alpha}^{n}$ and $X^{n-1}=X^{n-2} \cup_{\varphi} \bigcup_{\beta \in B} e_{\beta}^{n-1}$. The boundary of a cell is

$$
d_{n-1}\left(e_{\alpha}^{n}\right)=\sum_{\beta \in B} d_{\alpha \beta} e_{\beta}^{n-1}
$$

where $d_{\alpha \beta}$ is the degree of the map $S_{\alpha}^{n-1} \rightarrow X^{n-1} \rightarrow S_{\beta}^{n-1}$ that is the decomposition of the gluing map of e_{α}^{n} with the quotient map collapsing $X^{n-1}-e_{\beta}^{n-1}$ to a point.

2.5 Euler Characteristic

Definition 2.20 (Euler Characteristic). Suppose that X is a finite CW-complex with c_{n} n-cells. Then $\chi(X)=\sum_{i=0}^{\infty}(-1)^{i} c_{i} \in \mathbb{Z}$ is called the Euler Characteristic.

Proposition 2.21. If X is a finite $C W$-complex, then

$$
\chi(X)=\sum_{i=0}^{\infty}(-1)^{i} \operatorname{rank} H_{i}(X ; \mathbb{Z})=\sum_{i=0}^{\infty}(-1)^{i} \operatorname{rank} H_{i}(X ; \mathbb{Q})
$$

The numbers $\operatorname{rank} H_{i}(X ; \mathbb{Z})$ are called the Betti numbers.

