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Abstract

A list of definitions and theorems in preparation for my Algebraic Topology midterm.
This roughly covers Hatcher, Ch. 2: Homology, with an emphasis on the material from
2.1, 2.2, and 2.B. Any typos and mistakes are my own - kindly direct them to my inbox.
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1 Simplicial and Singular Homology

1.1 Simplicial Complexes

Definition 1.1 (Simplex). The n-simplex(denoted ∆n) is given by the convex hull of n+ 1
linearly independent vectors in Rn+1: given e0, . . . , en ∈ Rn+1,

∆n =

{
n∑
i=0

λiei : λi ∈ [0, 1],
n∑
i=0

λi = 1

}
.

We also denote ∆n = [e0, . . . , en].

Definition 1.2 (Face). A face of a simplex [v0, . . . , vn] is given by the convex hull of the
remaining vectors upon removing one of them. We denote this [v0, . . . , v̂i, . . . , vn], where vi is
the vector that is removed.

Definition 1.3 (Simplicial Complex). Let V be a finite (nonempty) set. A nonempty subset
S ⊂ P(V ) is a simplicial complex if

⋃
S = V and A ∈ S,B ⊂ A implies that B ∈ S.

1.2 Simplicial Homology

Definition 1.4. Let S be a simplicial complex. Define

Cn(S) = {
∑
i∈I

niAi : Ai ∈ S, |Ai| = n+ 1, ni ∈ Z}.

The elements of Cn(S) are called n-chains.

Definition 1.5. We define the boundary homomorphisms, ∂n : Cn+1(S)→ Cn(S) given by

∂n(A) =
n∑
j=0

(−1)j[vi0 , . . . , v̂ij , . . . , vin+1 ],

where A ∈ S, |A| = n+ 2 and A = [vi0 , . . . , vin+1 ].

Lemma 1.6. ∂n−1 ◦ ∂n ≡ 0.

Definition 1.7 (Cycles and Boundaries). The cycles and boundaries of Cn(S) are given by
the subgroups Zn(S) = ker ∂n−1 and Bn(S) = im ∂n, respectively.

Definition 1.8 (Simplicial Homology). We define the n-th simplicial homology group of S
as Hn(S) = Zn(S)/Bn(S).
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1.3 Singular Homology

We consider a topological space X.

Definition 1.9 (Singular Simplex). A continuous map σ : ∆n → X is a singular simplex.

Definition 1.10 (Singular Chains). We define Cn(X) to be the free group generated by
n-simplices:

Cn(X) = {
∑
i∈I

niσi : ni ∈ Z, I finite, σi is a singular simplex}.

Definition 1.11 (Boundary Maps). We define ∂n : Cn+1(X)→ C(X) by

∂n(σ) =
n+1∑
i=0

(−1)iσ|[e0,...,êi,...,en+1],

where we have a canonical identification of [e0, . . . , êi, . . . , en+1] with ∆n−1 preserving the
order of the vertices.

Definition 1.12 (Cycles and Boundaries). As before Zn(X) = ker ∂n−1, Bn(X) = im ∂n.

Lemma 1.13. ∂n−1 ◦ ∂n : Cn+1(X)→ Cn−1(X) = 0.

Definition 1.14 (Singular Homology). Hn(X;Z) = Zn(X;Z)/Bn(X;Z).

Proposition 1.15. If X is decomposed into its path-connected components Xα, there is an
isomorphism of Hn(X) with

⊕
αHn(Xα).

Proposition 1.16. If X is a nonempty path-connected topological space, then H0(X) ∼= Z.

Proposition 1.17. If X = {pt}, then Hn(X) = 0 for n > 0 and H0(X) = Z.

Definition 1.18 (Reduced Homology). Define the map ε : C0(X)→ Z by
∑

i niσi 7→
∑

i ni.
Using the sequence

. . .
∂n−→ Cn(X;Z)

∂n−1−−−→ · · · → C0(X;Z)
ε−→ Z,

and taking homologies, we obtain the reduced homology groups H̃i(X;Z).

1.4 Homotopy Invariance

Definition 1.19 (Chain complex). Let C be an abelian group and ∂ ∈ End(C). The pair
(C, ∂) is a chain complex if ∂2 = ∂ ◦ ∂ = 0. The homology of a chain complex is given by
H(C, ∂) = ker ∂/ im ∂.

Definition 1.20 (Gradings). A graded group A can be decomposed as A =
⊕

n∈ZAn. A
homomorphism f : A→ B is graded if f(An) ⊂ Bn. A chain complex (C, ∂) is graded if C
and ∂ are graded.
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Definition 1.21 (Chain Map). Suppose (C, ∂C), (D, ∂D) are two chain complexes. A
homomorphism f : C → D is a chain map if ∂D ◦ f = f ◦ ∂C .

Proposition 1.22. A chain map between chain complexes induces a homomorphism between
the homology groups of the two complexes, denoted by f∗ : H(C, ∂C)→ H(D, ∂D) given by
[c] 7→ [f(c)]. We also denote this functorially as H(f).

Some basic properties:

• If f : X → Y , g : Y → Z, then (g ◦ f)∗ = g∗ ◦ f∗.

• (idX)∗ = idH(X).

Definition 1.23 (Chain Homotopy). Two graded chain maps f, g : C → D are said to
be chain homotopic if there exists a homomorphism ϕ =

⊕
(ϕn : Cn → Dn+1) satisfying

f − g = ∂D ◦ ϕ+ ϕ ◦ ∂C .

Proposition 1.24. If f and g are chain homotopic, then H(f) = H(g).

Proposition 1.25. If X and Y are topological spaces and f : X → Y is a continuous map,
then it induces a chain map f] = Cn(X)→ Cn(Y ), defined by f](σ) = f ◦σ where σ : ∆n → X
is a generator of Cn(X).

Corollary 1.26. If f : X → Y is a homeomorphism, then f∗ : H(X) → H(Y ) is an
isomorphism.

Definition 1.27. Two maps f, g : X → Y are said to be homotopic if there exists a
continuous map F : X × [0, 1]→ Y such that F |X×{0} = f and F |X×{1} = y.

Definition 1.28 (Homotopy Equivalence). A map f : X → Y is said to be a homotopy
equivalence if there exists g : Y → X so that g ◦ f is homotopic to idX and f ◦ g is homotopic
to idY . If a homotopy equivalence exists between X and Y , then X and Y are homotopy
equivalent.

Proposition 1.29. If f, g : X → Y are homotopic maps, then f], g] : C(X) → C(Y ) are
chain homotopic chain maps.

Corollary 1.30. If X and Y are homotopy equivalent topological spaces, then Hn(X) ∼=
Hn(Y ).
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2 Computations and Applications

2.1 Exact Sequences and Excision

Definition 2.1 (Short Exact Sequence). Suppose that L,M,N are abelian groups with the
following maps:

0→ L
α−→M

β−→ N → 0.

The sequence is said to be a short exact sequence if α is a monomorphism, β is an epimorphism,
and ker β = imα.

Proposition 2.2. Suppose that L,M,N are graded chain complexes with a short exact
sequence

0→ L
α−→M

β−→ N → 0.

This induces a long exact sequence

. . .
δn−→ Hn(L)

Hn(α)−−−→ Hn(M)
Hn(β)−−−→ Hn(N)

δn−1−−→ Hn−1(L)→ . . .

Remark 2.3. The connecting homomorphisms δn arise from careful diagram chasing. See the
proof in the notes for more details.

Theorem 2.4 (Mayer-Vietoris). Suppose that X = A ∪ B = int A ∪ int B. There exists a
long exact sequence

. . .
δn−→ Hn(A ∪B)

fn−→ Hn(A)⊕Hn(B)
g−→n Hn(X)

δ−→n−1 Hn−1(A ∩B)→ . . . .

Proposition 2.5. For n > 0, Hi(Sn;Z) = 0 if i 6= 0 or n. Otherwise H0(Sn) = Hn(Sn) = Z
and the reduced homologies are H̃∗(S

n) = Z(n).

Corollary 2.6. Sn and Sm are homotopy equivalent if and only if n = m.

Corollary 2.7. Rn and Rm are homeomorphic if and only if n = m.

Definition 2.8 (Relative Homology). Suppose A ⊂ X is a pair of topological spaces.
Define Cn(X,A) = Cn(X)/Cn(A) with boundary maps ∂(X,A) : Cn(X,A)→ Cn−1(X,A) by
α 7→ ∂X(α). This gives a chain complex (Cn(X,A), ∂(X,A)) with corresponding homology
Hn(X,A;Z). This also has a long exact sequence induced from

0→ Cn(A)→ Cn(X)→ Cn(X,A)→ 0.

Theorem 2.9 (Excision Principle). Suppose that Z ⊂ A ⊂ X and Z ⊂ int A. Then, the
map i : (X/Z,A/Z) ↪→ (X,A) induces an isomorphism i∗ : Hn(X/Z,A/Z;Z)→ Hn(X,A;Z).

5



Vishal Raman 2 Computations and Applications

2.2 Degree

Definition 2.10 (Degree). Suppose that f : Sn → Sn is a continuous map. The induced
map f∗ : Hn(Sn)→ Hn(Sn) which are both isomorphic to Z. Every such map corresponds to
multiplication by the integer f∗(1), which we define to be the degree of f , denoted deg f .

Some basic properties:

• deg id = 1.

• If f is not surjective, deg f = 0.

• If f and g are homotopic, then deg f = deg g.

• deg fg = deg f deg g.

• If f is a reflection, deg f = −1.

• The antipodal map of Sn has degree (−1)n+1.

• If f : Sn → Sn has no fixed points, then deg f = (−1)n+1.

Proposition 2.11. deg f =
∑

i deg f |xi.

2.3 CW-Complexes

Definition 2.12 (CW-Complex). The topological space X is a CW-complex if it can be
constructed inductively as follows:

1. Start with X0, a discrete space whose points are regarded as 0-cells.

2. Inductively form an n-skeleton from Xn−1 by

Xn =
(
Xn−1

⊔
Di

/
{x ∼ ϕα(x) : x ∈ ∂Dn

α}),

where Dn
α are n-discs and ϕα : ∂Dn

α → Xn−1 are the gluing maps.

Proposition 2.13. If X is a CW-complex, then

• Hk(X
n, Xn−1;Z) ∼=

{
0 if k 6= n

Z|{n-cells}| if k = n

• Hk(X
n) = 0 for all k > n.

• The embedding i : Xn ↪→ X induces an isomorphism i:Hk(X
n)→ Hk(X) if k < n.
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2.4 Cellular Homology

Definition 2.14. A pair of spaces (X,A) is called good if

• A is non-empty and closed.

• there is an open set B ⊂ X containing A such that A is a deformation retract of
B; there is a map F : B × [0, 1] → B with F (b, 0) = b, F (b, 1) ∈ A for b ∈ B and
F (a, 1) = a for a ∈ A.

Theorem 2.15. For a good pair (X,A), the quotient map q : (X,A)→ (X/A,A/A) induces
an isomorphism

H(q) : Hi(X,A)→ Hi(X/A,A/A) ∼= H̃i(X/A)∀i.

Definition 2.16 (CW-Homology). Define CCW
n (X) = Hn(Xn, Xn−1;Z) with boundary map

dn−1 : CCW
n (X)→ CCW

n−1(X) defined by the composition of morphisms in the diagram

Hn(Xn, Xn−1;Z)
δ−→n−1 Hn−1(X

n−1;Z)
γ−→n−1 Hn−1(X

n−1, Xn−2)

where δn−1 is the connecting morphism and γn−1 is the induced by the embedding.

Proposition 2.17. (CCW
∗ (X), d∗) is a chain complex; dn−1 ◦ dn = 0.

Proposition 2.18. H∗(C
CW
∗ , d∗) ∼= H∗(X;Z), where the second H∗ is the singular homology.

Theorem 2.19 (Cellular Boundary Formula). Let X be a CW-complex where the n-th
skeleton Xn is given by Xn = Xn−1 ∪ϕ

⋃
α∈A e

n
α and Xn−1 = Xn−2 ∪ϕ

⋃
β∈B e

n−1
β . The

boundary of a cell is

dn−1(e
n
α) =

∑
β∈B

dαβe
n−1
β ,

where dαβ is the degree of the map Sn−1α → Xn−1 → Sn−1β that is the decomposition of the

gluing map of enα with the quotient map collapsing Xn−1 − en−1β to a point.

2.5 Euler Characteristic

Definition 2.20 (Euler Characteristic). Suppose that X is a finite CW-complex with cn
n-cells. Then χ(X) =

∑∞
i=0(−1)ici ∈ Z is called the Euler Characteristic.

Proposition 2.21. If X is a finite CW-complex, then

χ(X) =
∞∑
i=0

(−1)i rankHi(X;Z) =
∞∑
i=0

(−1)i rankHi(X;Q).

The numbers rankHi(X;Z) are called the Betti numbers.
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