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Abstract

A list of definitions and theorems in preparation for my Algebraic Topology midterm.

This roughly covers Hatcher, Ch. 2: Homology, with an emphasis on the material from

2.1, 2.2, and 2.B. Any typos and mistakes are my own - kindly direct them to my inbox.

Contents

1 Simplicial and Singular Homology
1.1 Simplicial Complexes . . . . . . . . . . .. e
1.2 Simplicial Homology . . . . . . . . . . .. ...
1.3 Singular Homology . . . . . . . . . . .

1.4 Homotopy Invariance . . . . . . . . . . . .o

2 Computations and Applications
2.1  Exact Sequences and Excision . . . . ... ... o Lo
2.2 Degree . . . .. e e e e e
2.3 CW-Complexes . . . . . . . i e e e e e e
2.4 Cellular Homology . . . . . . . . . . . . . e

2.5 Euler Characteristic . . . . . . . . . . .

w W NN

N 9 O o ot Ot



Vishal Raman 1 Simplicial and Singular Homology

1 Simplicial and Singular Homology

1.1 Simplicial Complexes

Definition 1.1 (Simplex). The n-simplex(denoted A™) is given by the convex hull of n + 1

linearly independent vectors in R™*!: given ey, ..., e, € R*
i=0 i=0
We also denote A" = [ey, . .., €]

Definition 1.2 (Face). A face of a simplex [vy, ..., v,] is given by the convex hull of the
remaining vectors upon removing one of them. We denote this [v, ..., 0;, ..., v,]|, where v; is
the vector that is removed.

Definition 1.3 (Simplicial Complex). Let V' be a finite (nonempty) set. A nonempty subset
S C P(V) is a simplicial complex if | JS =V and A € S, B C A implies that B € S.

1.2 Simplicial Homology
Definition 1.4. Let S be a simplicial complex. Define
Co(S) ={)_midi: A€ S,|Ail =n+1,n; € Z}.
iel
The elements of C,,(S) are called n-chains.

Definition 1.5. We define the boundary homomorphisms, 0, : C,,+1(S) — C,(S) given by

n

an<A) = Z(_l)j[vim ce ’@;’ to ’Ui""'l]’

J=0

where A € S, |[Al =n+2and A= [v;,.

.. 7Uin+1]~

Lemma 1.6. 0,_; 00, = 0.

Definition 1.7 (Cycles and Boundaries). The cycles and boundaries of C,(.S) are given by
the subgroups Z,,(S) = ker 9,_; and B,(S) = im 0, respectively.

Definition 1.8 (Simplicial Homology). We define the n-th simplicial homology group of S
as H,(S) = Z,(5)/B.(S5).
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1.3 Singular Homology

We consider a topological space X.
Definition 1.9 (Singular Simplex). A continuous map o : A" — X is a singular simplex.

Definition 1.10 (Singular Chains). We define C,(X) to be the free group generated by
n-simplices:

Cn(X) = {Z n;o; = n; € Z, 1 finite, 0; is a singular simplex}.
icl

Definition 1.11 (Boundary Maps). We define 0, : C,,11(X) — C(X) by

n+1
On(a) = Z(_l)ZU“@O ~~~~~ €yeonent1]d
i=0
where we have a canonical identification of [eq,...,&;,...,e,s1] with A"™! preserving the

order of the vertices.

Definition 1.12 (Cycles and Boundaries). As before Z,,(X) = ker 0,,—1, B,(X) = im 0,,.
Lemma 1.13. 9,100, : Cpy1(X) = Cr_1(X) = 0.

Definition 1.14 (Singular Homology). H,(X:Z) = Z,(X;Z)/B,.(X;Z).

Proposition 1.15. If X is decomposed into its path-connected components X, there is an
isomorphism of H,(X) with @, Hn(X,).

Proposition 1.16. If X is a nonempty path-connected topological space, then Hy(X) = Z.
Proposition 1.17. If X = {pt}, then H,(X) =0 forn >0 and Hy(X) = Z.

Definition 1.18 (Reduced Homology). Define the map € : Co(X) — Z by Y. no; — > . n;.
Using the sequence

00X Z) 2 S O(X2) S 2,
and taking homologies, we obtain the reduced homology groups I;TZ(X 7).

1.4 Homotopy Invariance

Definition 1.19 (Chain complex). Let C be an abelian group and 0 € End(C'). The pair
(C,0) is a chain complex if 3> = 9 0 @ = 0. The homology of a chain complex is given by
H(C,0) =kerd/ima.

Definition 1.20 (Gradings). A graded group A can be decomposed as A = @, ., A,. A
homomorphism f : A — B is graded if f(A,) C B,. A chain complex (C, ) is graded if C
and 0 are graded.
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Definition 1.21 (Chain Map). Suppose (C,0¢), (D,0p) are two chain complexes. A
homomorphism f : C'— D is a chain map if dp o f = f o J¢.

Proposition 1.22. A chain map between chain complezes induces a homomorphism between
the homology groups of the two complexes, denoted by f. : H(C,0¢) — H(D,0D) given by
[c] = [f(c)]. We also denote this functorially as H(f).

Some basic properties:

e If f: XY, g:Y — Z then (go f)s = g0 fs
Definition 1.23 (Chain Homotopy). Two graded chain maps f,g : C' — D are said to

be chain homotopic if there exists a homomorphism ¢ = @(¢, : C,, — D,41) satisfying
f—9=0poy+yodc.

Proposition 1.24. If f and g are chain homotopic, then H(f) = H(g).

Proposition 1.25. If X and Y are topological spaces and f : X — 'Y s a continuous map,
then it induces a chain map fy = Cp,(X) = C,(Y), defined by fy(0) = foo whereo : A™ — X
is a generator of Cp(X).

Corollary 1.26. If f : X — Y is a homeomorphism, then f, : H(X) — H(Y) is an
isomorphism.

Definition 1.27. Two maps f,g : X — Y are said to be homotopic if there exists a
continuous map F': X x [0,1] — Y such that F|x.qy = f and F|xxqy = -

Definition 1.28 (Homotopy Equivalence). A map f : X — Y is said to be a homotopy
equivalence if there exists g : Y — X so that go f is homotopic to idx and f o g is homotopic
to idy. If a homotopy equivalence exists between X and Y, then X and Y are homotopy
equivalent.

Proposition 1.29. If f,g : X — Y are homotopic maps, then f;,g; : C(X) — C(Y) are
chain homotopic chain maps.

I

Corollary 1.30. If X and Y are homotopy equivalent topological spaces, then H,(X)
H,(Y).
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2 Computations and Applications

2.1 Exact Sequences and Excision

Definition 2.1 (Short Exact Sequence). Suppose that L, M, N are abelian groups with the
following maps:

0 LSME N0

The sequence is said to be a short exact sequence if « is a monomorphism, 3 is an epimorphism,
and ker 8 = im a.

Proposition 2.2. Suppose that L, M, N are graded chain complexes with a short exact
sequence

0 LS3ME N0

This induces a long exact sequence

M@ g (M

6n71

) SO HL(N) 2

L HL (D) H, (L) — ...

Remark 2.3. The connecting homomorphisms d,, arise from careful diagram chasing. See the
proof in the notes for more details.

Theorem 2.4 (Mayer-Vietoris). Suppose that X = AU B = int AU int B. There ezists a
long ezact sequence

2 H(AUB) &5 Hy(A) @ Hy(B) %y Ho(X) 301 He i(ANB) > ...

Proposition 2.5. Forn >0, H;(S";Z) =0 ifi # 0 or n. Otherwise Hy(S") = H,(S") = Z
and the reduced homologies are H,(S™) = Z).

Corollary 2.6. S™ and S™ are homotopy equivalent if and only if n = m.
Corollary 2.7. R™ and R™ are homeomorphic if and only if n = m.

Definition 2.8 (Relative Homology). Suppose A C X is a pair of topological spaces.
Define C,(X, A) = C,(X)/Cn(A) with boundary maps 0(x a) : Cr(X,A) = C,,—1(X, A) by
a + Ox(«). This gives a chain complex (C,(X, A),0(x,4)) with corresponding homology
H,(X,A;Z). This also has a long exact sequence induced from

0— Ch(A) = Co(X) = Ch(X,A) — 0.

Theorem 2.9 (Excision Principle). Suppose that Z C A C X and Z C int A. Then, the
map i : (X/Z,A)Z) — (X, A) induces an isomorphism i, : H,(X/Z, A)Z;7) — H,(X, A;7Z).
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2.2 Degree

Definition 2.10 (Degree). Suppose that f : S* — S" is a continuous map. The induced
map f, : H,(S") — H,(S™) which are both isomorphic to Z. Every such map corresponds to
multiplication by the integer f.(1), which we define to be the degree of f, denoted deg f.

Some basic properties:

e degid = 1.

e If f is not surjective, deg f = 0.

e If f and g are homotopic, then deg f = degg.

e deg fg =deg fdegyg.

o If f is a reflection, deg f = —1.

e The antipodal map of S" has degree (—1)"*1.

o If f:S™ — S has no fixed points, then deg f = (—1)""1.

Proposition 2.11. deg f = > . deg f

x5

2.3 CW-Complexes

Definition 2.12 (CW-Complex). The topological space X is a CW-complex if it can be
constructed inductively as follows:

1. Start with X°, a discrete space whose points are regarded as 0O-cells.

2. Inductively form an n-skeleton from X" ! by

X" — (X”_l |_|Di/ {2 ~ palz) : z € DY),
where D" are n-discs and @, : D" — X"~ ! are the gluing maps.

Proposition 2.13. If X is a CW-complezx, then

0 ifk#n

n n—1. ~
[ ] Hk(X 7X 7Z) - {Z|{n—c€ll3}| ka =n

o Hp(X™) =0 for all k > n.

e The embedding i : X" — X induces an isomorphism i. Hp(X™) — Hp(X) if k <n.
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2.4 Cellular Homology

Definition 2.14. A pair of spaces (X, A) is called good if

e A is non-empty and closed.

e there is an open set B C X containing A such that A is a deformation retract of
B; there is a map F' : B x [0,1] — B with F(b,0) = b, F(b,1) € A for b € B and
F(a,1) =a for a € A.

Theorem 2.15. For a good pair (X, A), the quotient map q : (X, A) = (X/A, AJ/A) induces
an isomorphism

H(q): Hi(X,A) = H;(X/A, AJA) = H;(X/AVi

Definition 2.16 (CW-Homology). Define CS"(X) = H, (X", X" ! Z) with boundary map
dp_1: CEV(X) — CY"(X) defined by the composition of morphisms in the diagram

Ho (X" X5 7) Sy Hy (X5 Z) By Hoo (X1, X72)
where 0,1 is the connecting morphism and +,,_; is the induced by the embedding.
Proposition 2.17. (C°V(X),d.) is a chain complex; d,_ o d,, = 0.
Proposition 2.18. H,(C®WY d,) = H.(X;Z), where the second H, is the singular homology.

Theorem 2.19 (Cellular Boundary Formula). Let X be a CW-complex where the n-th
skeleton X™ is given by X" = X" ' Uy Uyeqen and X" = X" 2 U, Ugep el ' The
boundary of a cell is

Z dageﬁ 5

BEB

where dyp is the degree of the map S~ — X"~ 1 — Sg_l that is the decomposition of the
gluing map of e with the quotient map collapsing X" — eg’l to a point.

2.5 Euler Characteristic

Definition 2.20 (Euler Characteristic). Suppose that X is a finite CW-complex with ¢,

n-cells. Then x(X) = >"7,(—1)‘¢; € Z is called the Euler Characteristic.

Proposition 2.21. If X s a finite CW-complex, then

X(X) = Z(—nirank Hi(X;7) = Z(—nirank Hi(X;Q).

The numbers rank H;(X;Z) are called the Betti numbers.
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