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Abstract

A list of definitions and theorems in preparation for my Algebraic Topology final. This
roughly covers Hatcher, Ch. 3: Cohomology, with an emphasis on the material from 3.1, 3.2,
and 3.3. Any typos and mistakes are my own - kindly direct them to my inbox.
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1 Cohomology Groups

Definition 1.1 (Cochain Complex). Suppose (
⊕

nCn, ∂) is a graded chain complex. The dual
cochain complex is defined as

Cn : Hom(Cn,Z) = {f : Cn → Z : f is a homomorphism},

with coboundary δ : Cn → Cn+1 given by

Cn+1 3 (δnf)(c) := f(∂nc) ∈ Z.

Remark 1.2. It is easy to check that δ2 = 0.

Definition 1.3 (Cohomology). Given a cochain complex (C∗ =
⊕
Cn, δ =

⊕
δn), we define the

cohomology
Hn(C∗) := Ker δn/ Im δn−1.

Definition 1.4. Suppose X is a topological space. Apply the algebra to the space to obtain
(
⊕
Cn(X), ∂ =

⊕
∂n), the singular chain complex associated to X. Dualizing, we obtain a cochain

complex (C∗(X), δ) and cohomology H∗(X;Z).

1.1 The Universal Coefficient Theorem

Definition 1.5 (Ext). Roughly, Ext(Hn−1(C), G) is the group of Abelian extensions of G by
Hn−1(C). It has the following properties:

• Ext(H ⊕H ′, G) = Ext(H,G)⊕ Ext(H ′, G),

• Ext(H,G) = 0 if H is free.

• Ext(Z/nZ, G) = G/nG.

Theorem 1.6 (Universal Coefficient Theorem). If C =
⊕
Cn is a chain complex and G is an Abelian

group, then the cohomology groups Hn(C;G) of the cochain complex Hom(Cn, G) are determined by
the split exact sequences

0→ Ext(Hn−1(C), G)→ Hn(C;G)→ Hom(Hn(C), G)→ 0.

Remark 1.7. In particular, cohomology groups are determined by homology. Ext(Hn(C), G) is often
easy to compute using the properties since Hn−1(Cn(X)) = Zr ⊕ T , where T is the torsion.

Proposition 1.8. Suppose f : C∗ → D∗ is a chain map between chain complexes. Then, f induces
a map f# : D∗ → C∗ by f#(α)(c) = α(f(c)) for all α ∈ Hom(D,Z) and c ∈ C, which is a cochain
map. In particular, it induces a map f∗ : H∗(D) → H∗(C) sometimes denoted functorially by
H∗(f).
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2 Cup Product

Definition 2.1 (Cup Product). For ϕ ∈ Ck(X), ψ ∈ C`(X), define ϕ∪ψ ∈ Ck+`(X) as the cochain
whose value on a singular simplex Ck+`(X) 3 σ : [v0, . . . , vk+`]→ X is given by

(ϕ ∪ ψ)(σ) = ϕ(σ|[v0,...,vk]) · ψ(σ|[vk,...,vk+`]).

Lemma 2.2. δ(ϕ ∪ ψ) = δϕ ∪ ψ + (−1)kϕ ∪ δψ for ϕ ∈ Ck(X), ψ ∈ C`(X).

Remark 2.3. This gives a differential-graded algebra structure on C∗(X).

Corollary 2.4. If ϕ,ψ are cocycles, then ϕ ∪ ψ is a cocycle.

Corollary 2.5. If ϕ is a coboundary and ψ is a cocycle(or vice versa), then ϕ ∪ ψ is a coboundary.

Corollary 2.6. The cup product induces a map on cohomologies:

∪ : Hk(X;Z)×H`(X;Z)→ Hk+`(X;Z).

2.1 Cohomology Ring

Proposition 2.7. There exists 1 ∈ C0(X;Z) such that for all σ ∈ C0(X;Z), we have 1(σ) = 1 ∈ Z.

Theorem 2.8 (Cohomology Ring). H∗(X;Z) =
⊕∞

n=0H
n(X;Z) is a unital skew-commutative ring

where 1 is the unit and the product is ∪. Namely, x ∪ y = (−1)k`y ∪ x, where x ∈ Hk(X;Z), y ∈
H`(X;Z).

2.2 Spaces with Polynomial Cohomology

Theorem 2.9. H∗(RPn;Z2) = Z2[α]/(αn+1) and H∗(RP∞;Z2) = Z2[α], where |α| = 1 is a
generator of H∗(RP1;Z2).

Theorem 2.10. H∗(CPn;Z) = Z[g]/(g) and H∗(CP∞;Z) = Z[g], where g is a generator of
H2(CPn;Z) ∼= Z.

Remark 2.11. This is canonical by the choice of orientation given by the complex structure.
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3 Poincaré Duality

3.1 Orientation

We assume familiarity with smooth manifolds.

Definition 3.1. A local orientation of a topological manifold M is a choice of generator µn ∈
Hn(M,M \ {m};Z) ∼= Z.

Definition 3.2. An orientation on M is a choice of local orientations M 3 m 7→ µm such that for
every m ∈M , there exists a neighborhood U 3 m and an element µU ∈ Hn(M,M \ U ;Z) such that
the embedding (M,M \ U)→ (M,M \ {p}) induces a map sending µU 7→ µp for all p ∈ U .

Fact 3.3. Not every manifold M is orientable, but every manifold admits a double cover M which
is orientable.

Definition 3.4. Let M := {µm : m ∈M,µm is a local orientation generating Hn(M,M \{m};Z)}.
The basis of the topology is as follows: for an open ball B ⊂ ϕα(Rn) ⊂M and µB ∈ Hn(M,M \B),
let U(µB) := {restrictions of µB to M,M \ {p} ∀p ∈ B}. This gives a 2 : 1 continuous covering map
M →M by µm 7→ m.

Lemma 3.5. M is orientable if and only if M has two components.

3.2 Cap Product

Definition 3.6. Assume that k ≥ `. The cap product ∩ : Ck(X;Z)× C`(X;Z) → Ck−`(X;Z) is
defined as follows: let σ ∈ Ck(X;Z) and ϕ ∈ C`(X;Z), then the image is given by

σ ∩ ϕ = ϕ(σ|[v0,...,v`])σ|[v`,...,vk].

Proposition 3.7. ∂(σ ∩ ϕ) = (−1)`(∂σ ∩ ϕ− σ ∩ δϕ).

Corollary 3.8. ∩ induces a well defined map Hk(X;Z)×H`(X;Z)→ Hk−`(X;Z).

3.3 The Duality Theorems

Proposition 3.9. If M is a closed topolpogical manifold, then orientability is equivalent to
Hn(M ;Z) = Z and a choice of such an isomorphism corresponds to an orientation, i. e. a
choice of fundamental cycle [M ] ∈ Hn(M ;Z).

Theorem 3.10 (Poincaré Duality). Suppose that Mn is a closed topological manifold which is
oriented with the fundamental class [M ] ∈ Hn(M ;Z). Then the map D : Hk(M ;Z)→ Hn−k(M ;Z)
defined by α 7→ [M ] ∩ α is an isomorphism for all k.

4


	Cohomology Groups
	The Universal Coefficient Theorem

	Cup Product
	Cohomology Ring
	Spaces with Polynomial Cohomology

	Poincaré Duality
	Orientation
	Cap Product
	The Duality Theorems


