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§1 January 20th, 2021

§1.1 Intro to Riemann Mapping Theorem

Our first goal is to proof a fundamental theorem of Riemann on conformal mappings.
We start with several preparations, including some detours. The theorem essentially says
that lots of open sets in C are holomorphically isomorhpic, given that they satisfy some
simple topological conditions.

§1.2 Cauchy’s Integral Formula

Recall Cauchy’s formula:

f(z0) =
1

2πi

∫
Γ

f(z)

z − z0

dz

where Γ is a simple closed curve, piecewise differentiable, z0 ∈ Int(Γ), and f : Ω→ C is
a holomorphic function, with Ω is open, Ω ⊃ Γ ∪ Int(Γ).

If Γ is the circle |z − z0| = R, we parameterize with z = Reiθ + z0 with θ ∈ [0, 2π).
This gives

f(z0) =
1

2π

∫ 2π

0

f(z0 +Reiθ) dθ,

which represents the average of f on the circle.
It follows that

|f(z0)| ≤ max
∂BR(z0)

|f(z)|,

with equality if and only if f is constant.
If f : Ω→ C is holomorphic for Ω connected, open and z0 ∈ Ω, then

|f(z0)| ≤ sup
z∈Ω
|f(z)|

with equality if and only if f is constant.

§1.3 Schwarz Lemma

Theorem 1 (Schwarz Lemma)

For f : B1(0)→ C holomorphic with |f(z)| ≤ 1 for all z and f(0) = 0. Then

|f(z)| ≤ |z|, |f ′(0)| ≤ 1.

If for some z0 6= 0, |f(z0)| = |z0| or if |f ′(0)| = 1 then f(z) = cz for some |c| = 1.

Proof. Define a function

g(z) =

{
f(z)/z, if 0 ≤ |z| ≤ 1

f ′(0), if z = 0
.

Note that g(z) is continuous since at zero,

lim
z→0

f(z)

z
= lim

z→0

f(z)− f(0)

z − 0
= f ′(0).

5
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Hence, |g(z)| ≤ C < ∞ using the Weierstrass Extreme Value theorem. If 0 < ε <
|w| < r < 1, note that taking a Keyhole Contour, we have

g(w) =
1

2πi

(∫
|z|=r
−
∫
|z|=ε

)
g(z)

z − w
dz.

Note that ∣∣∣∣∫
|z|=ε

g(z)

z − w
dz

∣∣∣∣ ≤ (2πε) · C 1

|w| − ε
ε→0−−→ 0.

It follows that

g(w) =
1

2πi

∫
|z|=r

g(z)

z − w
dz

for 0 < |w| < r. The right side is holomorphic in w if |w| < r, so it follows that

g(w) =
1

2πi

∫
|z|=r

g(z)

z − w
dz

is holomorphic in |z| < 1.
This can also be proved by taking a Taylor series about the origin. Since there is no

constant term, we can divide by z to still have a convergent Taylor series.
If r < 1,

sup
|z|≤r
|g(z)| = sup

|z|=r
|g(z)| ≤ sup

|z|=r

|f(z)|
|z|

≤ 1

r
.

If we let r ↑ 1, then we get sup|z|<1 |g(z)| ≤ 1. It follows that |f(z)| ≤ |z|, |f ′(0)| ≤ 1.
If |f(z0)| = z0 for some 0 < |z0| < 1 then |g(z0)| = 1 and g is constant by the maximum

principle so g(z) = c, f(z) = cz. If |f ′(0)| = 1, then |g(0)| = 1 so g is constant and
f = cz.

§1.4 Maximum Principles

In the above proof, we used the maximum principle. Some other versions we will use are
the following:

If K ⊂ C compact and f : K → C continuous, and the restriction of f to the interior
of K is holomorphic, then

sup
z∈K
|f(z)| = sup

z∈∂K
|f(z)|.

If Ω is open and connected, f : Ω→ C, z0 ∈ Ω, and |f(z0)| = supz∈Ω |f(z)|, then f is
constant. Applying this to ef and using that |ef | = eRe f , we find that

Re f(z0) = sup
z∈Ω

Re f(z),

implies that f is constant. We have the same result for Im f by replacing f with −if .
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§2 January 25th, 2021

§2.1 Uniform Convergence

Remark 2.1. They sometimes call open connected sets ”regions”.

Definition 2.2 (Uniform Convergence). Let Ω ⊂ C be open. Let fn : Ω → C be
holomorphic and f : Ω→ C a function so that limn→∞ supz∈K |f(z)− fn(z)| = 0 for all
K ⊂ Ω compact(also denoted K ⊂⊂ Ω).

Remark 2.3. Recall from real analysis that f is a continuous function.

Some further remarks:

• It suffices to check the result for a sequence of compact subsets Km so that⋃
mK

◦
m = Ω, the it suffices to check those. If K ⊂⊂ Ω, then K is compact and

covered by the union of the subsets so there exists a finite subcovering, and uniform
convergence on the subcovering implies uniform convergence on K.

• It is often convenient to introduce ‖g‖K = supz∈K |g(z)|. Uniform convergence can
be restated as ‖fn − f‖K → 0 for all K ⊂⊂ Ω.

• If ‖fn− f‖K → 0 for all K ⊂⊂ Ω, then f is also holomorphic. It follows by passing
to the limit in the Cauchy Integral formula. Namely, take {z : |z − z0| ≤ R} ⊂ Ω
and consider the points in |z0 − ζ| < R.

∣∣∣∣fn(ζ)− 1

2πi

∫
|z−z0|=R

f(z)

z − ζ
dz

∣∣∣∣ =

∣∣∣∣ 1

2πi

∫
|z−z0|=R

fn(z)

z − ζ
dz − 1

2πi

∫
|z−z0|=R

f(z)

z − ζ
dz

∣∣∣∣
≤ 1

2π

1

R− |z0 − ζ|
· (2πR)‖fn − f‖|z−z0|=R → 0.

So it follows that

f(ζ) = lim
n→∞

fn(ζ) =
1

2πi

∫
|z−z0|

f(z)

z − ζ
dz.

It follows that f continuous on |z − z0| = R is holomorphic in ζ ∈ {|z − z0| < R},
so it follows that f is holomorphic.

• We can similarly show that

f (
nj)(ζ) =

n!

2πi

∫
|z−z0|=R

fn(z)

(z − ζ)n+1
dz

and ‖f (j)
n − f (j)‖K → 0.

From the last item, we have the following theorem.

Theorem 2

If fn → f on compact subsets of Ω, the if fn is holomorphic we find that f is
holomorphic and f

(
nj)→ f (j) uniformly on compact subsets of Ω.

7
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Theorem 3 (Hurwitz)

Let Ω be a region, f : Ω→ C and fn : Ω→ C holomorphic with fn(Ω) ⊂ C \ {0},
n ∈ N and ‖fn − f‖K → 0 for all compact subsets. Then either f ≡ 0 or f(Ω) ⊂
C \ {0}.

Proof. If f is not identically zero on ω, then since f is holomorphic, its zeros are isolated.
If z0 ∈ Ω, f(z0) = 0, then there is ε > 0 so that when 0 < |z − z0| < ε, f(z) 6= 0.

Since f(z) 6= 0 for |z − z0| = ε/2, by the Weierstrass theorem applied to |f | on
|z − z0| = ε, we have |f(z)| ≥ m > 0 on {|z − z0| = ε/2} = Γ. If ‖fn − f‖Γ ≤ m/2 for
n ≥ N , then

|fn(z)| ≥ |f(z)| −m/2 ≥ m−m/2 = m/2

for z ∈ Γ. Hence, it follows that ‖1/fn − 1/f‖Γ → 0(we leave this as an exercise).
Since ‖f ′n − f ′‖Γ → 0, we find that ‖f ′n/fn − f ′/f‖ → 0(another exercise) and hence

1

2πi

∫
Γ

f ′n
fn
dz → 1

2πi

∫
Γ

f ′

f
dz.

The integrand of the left hand side is (log fn)′, whose integral is 0, and the right side is
the order of the zero of f at z0 by the argument principle. It follows that the order of z0

as a possible zero is 0, so f(z0) 6= 0.

Theorem 4

For Ω ⊂ C open, F a set of holomorphic functions, the following are equivalent:

• for every K ⊂⊂ Ω supf∈F ‖f‖K <∞

• for every sequence (fn)n∈N ⊂ F , there is a subsequence (fnj)j∈N with n1 <
n2 < . . . so that (fnj)j∈N is uniformly convergent on compact subsets of Ω.

Proof. We first show 2 implies 1. If supf∈F ‖f‖K = ∞, then we can find for each
n ∈ N fn ∈ F so that ‖fn‖K ≥ n. If we abstract a convergence subsequence, then
‖fnj − f‖K ≤ C <∞ and ‖fnj‖K ≤ ‖f‖K +C, while ‖fnj‖K →∞, a contradiction.

8
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§3 January 27th, 2021

§3.1 Uniform Convergence, continued

Theorem 5

For Ω ⊂ C open, F a set of holomorphic functions, the following are equivalent:

• for every K ⊂⊂ Ω supf∈F ‖f‖K <∞

• for every sequence (fn)n∈N ⊂ F , there is a subsequence (fnj)j∈N with n1 <
n2 < . . . so that (fnj)j∈N is uniformly convergent on compact subsets of Ω.

I missed the beginning of the class, but I will add the proof of the theorem once notes
are posted.

§3.2 Metric Convergence

One can put a metric on holomorphic functions so that convergence in the metric is
uniform convergence on compact sets. For f : Ω→ C, but Kn b Ω so that

⋃
nK

◦
n = Ω

and take

d(f, g) =
∞∑
n=1

‖f − g‖Kn
1 + ‖f − g‖Kn

2−n.

§3.3 Riemann Sphere

On the set C∪ {∞}, we consider the topology which makes it the Alexandroff(one-point)
compactification of C. If z ∈ C, a neighborhood is one that contains a neighborhood in
C and a neighborhood of ∞ is of the form {∞} ∪ (C \K) for K b C.

Let U+ = C ⊂ C ∪ {∞} and U− = (C \ {0}) ∪ {∞}. Note that the union of the two
sets covers the Riemann Sphere. Define ψ+ : U+ → C by ψ+(z) = z and ψi : U− → C is
given by ψ−(w) = 1/w if w ∈ C \ {∞} and 0 if w =∞. Notice that these two functions
are bijections.

If V ⊂ C ∪ {∞} is open, a function f : V → C is holomorphic if

f |V ∪U± ◦ (ψ±|V ∪U±)−1 : ψ±(V ∪ U±)→ C

is holomorphic. In this way, we know what holomorphic functions are on open sets of
C ∪ {∞}.

More generally, we can describe a Riemann surface in the following way - Let X
be a topological space. Take {(Uα, zα)}α∈I where Uα ⊂ X is open, and

⋃
α∈I Uα = X

and zα : Uα → C is continuous, zα(Uα) is open and zα is a homeomorphism. The key
requirement is that the maps zα ◦ z−1

β : zβ(Uα ∪ Uβ)→ zα(Uα ∪ Uβ) are holomorphic.
Then, if U ⊂ X is open, f : U → C is holomorphic if for all α ∈ I,

f |U∪Uα ◦ (zα|u∪Uα)−1

is holomorphic. Two such atlases give the same Riemann surface if put together, we get
an atlas.

9
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§4 February 1st, 2021

§4.1 Connectivity

Definition 4.1. Ω ⊂ C open is connected if Ω = Ω1 ∪Ω2 open with Ω1 ∩Ω2 = ∅ implies
that one of the two is empty. For open sets, this is equivalent to arcwise connected.

Definition 4.2. An set is arcwise connected if for every z1, z2 ∈ Ω, there is a path
ϕ : [0, 1]→ Ω which is continuous and ϕ(0) = z1, ϕ(1) = z2.

Definition 4.3. Ω is simply connected if for z0 ∈ Ω, Γ : [0, 1] → Ω continuous and
Γ(0) = Γ(1) = z0, then there is G : [0, 1]× [0, 1]→ Ω continuous with G(t, 0) = Γ(t) for
t ∈ [0, 1] and G(t, 1) = z0, for t ∈ [0, 1].

Simply connected corresponds to the idea of being able to continuously deform the set
to a point for each point.

In R2 ∼= C, Ω-open simply connected is equivalent to (C ∪ {∞}) \ Ω is connected in
C∪{∞}. That is, if F = C∪{∞}\Ω, which is closed in C∪{∞}, with F ∩V1 ∩V2 = ∅,
then at least one of the F ∩ Vk = ∅. If 0 ∈ Ω, then Ω is simply connected if and only if
{0} ∪ {1/z : z ∈ C \ Ω} is connected(this is a local representation).

• Take Ω = C \
⋃m
j=1{tzj : t ∈ [1,∞)} for z1, . . . , zn ∈ C \ {0}.

• C \ spirals.

Theorem 6 (Riemann Mapping Theorem)

If Ω ⊂ C open, connected, simply connected, ∅ 6= Ω 6= C, then Ω and D = {|z| < 1}
are holomorphic isomorphisms.

§4.2 Fractional Linear Transformations

Recall that if f ∈ Aut(D) then f(z) = az+b
xz+d

, which was proved using the Schwarz lemma.
We view the fractional linear maps from a different context.

We define a map p : C2 \ {
(

0
0

)
} → C ∪ {∞} given by

p

((
z1

z2

))
=

{
z1/z2 if z2 6= 0

∞ if z2 = 0
.

Then p(ξ) = p(η) if and only if ξ = λη for λ ∈ C× = C \ {0}.
There is a larger group acting on C2 \ {

(
0
0

)
} given by GL(2,C) the invertible 2 × 2

matrices in the natural way so that

A

(
z1

z2

)
7→ A11p(ξ) + A12

A21p(ξ) + A22

.

Define Tg : C ∪ {∞} → C ∪ {∞} given by

Tgz =
az + b

cz + d
,

with Tg(∞) = a
c
. We have the action Tgp(ξ) = p(gξ) for g ∈ GL(2,C).

10
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This gives
Tg1 ◦ Tg2 = Tg1g2 ,

(Tg)
−1 = Tg−1 .

We can also ask about the fixed point:

Tgp(ξ) = p(ξ)↔ p(ξ) = p(gξ)⇔ gξ = λξ , λ ∈ C×

It follows that the fixed points of Tg correspond to the eigenvectors of GL(2,C).

§4.3 Fractional Linear Transformations, Unit Disk

If we have ξ =
(
z1
z2

)
, then p(ξ) ∈ D if and only if |z1| < |z2| if and only if z1z1 − z2z2 < 0.

If we let

J =

(
1, 0

0,−1

)
,

we consider the sesquilinear form 〈J
(
ξ1
ξ2

)
,
(
η1
η2

)
〉, where it is linear in the first coordinate

and conjugate linear in the second coordinate. Note that

〈J
(
ξ1

ξ2

)
,

(
η1

η2

)
〉 = ξ1η1 − ξ2η2.

When does g ∈ GL(2,C) preserve 〈Jξ, ξ〉?
This means that

〈Jgξ, gξ〉 = 〈Jξ, ξ〉

for all ξ ∈ C2 \ {0}. Then,
〈g∗Jgξ, ξ〉 = 〈Jξ, ξ〉

so it follows that g∗Jg = J . (We prove this by transforming ξ in polar coordinates,
ξ = x+ iky, and considering k = 0, 1, 2, 3. These four equations allow us to determine
the equality). Note that U(1, 1) = {g : g∗Jg = J} forms a group structure where J has
eigenvalues ±1 for this reason, we denote U(1, 1) ⊂ GL2(C).

We claim the following: Tg ∈ Aut(D)⇔ g ∈ C× · U(1, 1).

11
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§5 February 3rd, 2021

§5.1 Remark on the Zeta Function

Theorem 5.1 (S.M. Voronin 1975)

For D = {1
2
< Re(z) < 1}, f : D → C \ {0}. If K ⊂⊂ D and ε > 0, then there

exists t ∈ R such that
‖f(·)− ζ(·+ it)‖K < ε.

This theorem essentially says that if I slide around the zeta function in the strip D, I
can uniformly approximate pretty much any function I want.

§5.2 Fractional Linear Transformations, continued

Note that Ker(g 7→ Tg) = C×I2. We define SL(2;C) = {g ∈ GL(2;C) : det g = 1}, the
special linear group.

Theorem 5.2

For g ∈ SL(2;C), Tg ∈ Aut(D) if and only if g ∈ U(1, 1).

Proof. We start with the forward direction. From the first homework, we showed that
f ∈ Aut(D) implies that f(z) = Tgz where g is the composition of a rotation g1 and

g2 =

(
1 z0

z0 1

)
for z0 ∈ D. It suffices to check that g1, g2 ∈ U(1, 1)× C×I2. This is easy

to check.
Now, we show the converse. If g ∈ U(1, 1), then g−1 ∈ U(1, 1). If z ∈ D, then

z = p(ξ), 〈Jξ, ξ〉 < 0. We have Tgz = p(g xi) and 〈Jξ, ξ〉 < 0 implies that 〈g∗jgξ, ξ〉 < 0,
which implies that 〈Jgξ, gξ〉 < 0, which shows that Tgz = p(gξ) ∈ D. Hence TgD ⊂ D.
The same argument holds for T−1

g D ⊂ D so we have TgD = D exactly, so Tg = Aut(D).

§5.3 Automorphisms of the Half Plane

There is a conformal map from H+ → D given by f : z 7→ z−i
z+i

. This corresponds to

f =

(
1 −i
1 i

)
.

Note that

f−1 =
1

2

(
1 1
i −i

)
.

Now, Aut(H+) = {(Tf)−1TgTf |Tg ∈ Aut(D)} = {Tf−1gf |g ∈ SU(1, 1)}. it follows
that Aut(H+) = {Th|fhf−1 ∈ SU(1, 1)}(assuming h ∈ SL(2,C), fhf−1 ∈ SL(2,C)). It
follows that (fhf−1)∗J(fhf−1) = J , so h∗(f ∗Jf)h = f ∗Jf . We can compute

f ∗Jf =

(
0 −2i
2i 0

)
.

It follows that

h∗
(

0 −1
1 0

)
h =

(
0 −1
1 0

)
.

12
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If we let h =

(
a b
c d

)
, then

(
0 −1
1 0

)
h∗
(

0 −1
1 0

)
h = I2.

If we check the computation, we find that a, b, c, d ∈ R, so it follows that h ∈ SL(2,R).

§5.4 The Cross Ratio

Note that Tg is completely determined by Tg0, Tg1, Tg∞. Suppose Tg0 = Th0, Tg1 = Th1,
Tg∞ = Th∞. If we let r = g−1h, we have Tr0 = 0, Tr1 = 1, Tr∞ =∞, so it follows that
r ∈ C×I2 (carry out the matrix multiplication for an arbitrary matrix).

if we look at g−1 instead of g, we find that Tg is completely determined by a, b, c ∈ C∪∞
so that Ta = 1, T b = 0, T c =∞. Given, a, b, c, such a Tg is the map

z 7→ z − b
z − c

:
a− b
a− c

.

We denote the RHS by (z, a, b, c), which is a fractional linear map taking a, b, c to
1, 0,∞. This is called the cross ratio of z, a, b, c.

Theorem 5.3

If Tg is a fractional linear transformation and z1, z2, z3, z4 are distinct points in C∪∞,
then

(z1, z2, z3, z4) = (Tgz1, Tgz2, Tgz3, Tgz4).

Remark 5.4. The above theorem shows that cross ratios are invariant under fractional
linear transformations.

13



Vishal Raman (April 28, 2021) Math 205

§6 February 8th, 2021

§6.1 Mappings of Circles and Lines

Lemma 6.1

For g ∈ GL2(C), {w ∈ C ∪ {∞} : Tgw ∈ R ∪ {∞}} is a circle or a straight line with
a point at infinity.

Proof.
aw + b

cw + d
=
aw + b

cw + d
,

Then (ac− ca)|w|2 + (ad− cb)w+ (bc− da)w+ bd− db = 0. If ac− ca = 0, then we have
a straight line. If ac− ca 6= 0, we have∣∣∣∣w +

ad− cb
ac− ca

∣∣∣∣ =

∣∣∣∣ad− bcac− ca

∣∣∣∣ ,
a circle.

§6.2 Revisiting the Schwarz Lemma

Recall we have f ∈ Aut(D), with f(0) = 0. We will use the fractional linear transforma-
tions so that 0 ∈ D no longer has a special role.

Given f : D→ D holomorphic with z0 ∈ D. Take an automorphism mapping 0→ z0

given by ·+z0
1+z0(·) . Then, applying f and applying ( ·+f(z0)

1+f(z0)(·))
−1, which sends f(z0) → 0.

These are all holomorphic, so it follows that the composition is a holomoprhism from
D → D mapping 0 → 0. Now, we can apply the Schwarz Lemma as usual: For the
derivatives, we use the chain rule:(

·+ z0

1 + z0(·)

)′
|z=0 = 1− |a|2.

Composing the derivatives along the composition, we find the derivative evaluated at 0
which we require to be ≤ 1.

It follows that
|f ′(z0)|

1− |f(z0)|2
≤ 1

1− |z0|2
.

Moreover, by the Schwarz Lemma, we have equality if and only if f ∈ Aut(D). if we
put w = f(z), then dw = f ′dz and the inequality is

|dw|
1− |w|2

≤ dz

1− |z|2
.

This can be interpreted as having on D the Riemannian metric

dx2 + dy2

(1− (x2 + y2))2

and f : D→ D, contracting the metric.

14
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§6.3 Functions on Simply Connected Regions

Recall the following properties of holomorphic functions in simply connected regions:

• For f : Ω→ C holomoprhic, then there is F : Ω→ C holomorphic so that F ′ = f .

• f : Ω→ C \ {0}, then there exists g : Ω→ C holomorphic so that eg = f .

• f : Ω→ C \ {0} holomorphic, then there exists g : Ω→ C so that hn = f .

• f : Ω→ C holomorphic and non-constant, Ω a region, then f(V ) is open if V ⊂ Ω,
V is open.

§6.4 Injective Functions

Let f : Ω→ G be a holomorphic function with Ω open and connected. If f is injective,
then f ′(z) 6= 0. If so, then f(z) − f(z0) = u(z)n if 0 = f ′(z0) = . . . , fn−1(z0) and
f (n)(z0) 6= 0, with u(z0) = 0. Then u({|z − z0| < ε}) is open for some ε > 0 so it
contains {|ζ| < δ} for some δ > 0. It follows that U(zk) = δ

z
e2πik/n for 1 ≤ k ≤ n and

f(z1) = · · · = f(zn). We could also use the argument principle to show that f ′(z) 6= 0.
Then, f(Ω) is open and f has local inverses: for each z ∈ Ω, there is a neighborhood

Vz, where f is a holomorphic isomorphism in the region. It follows that f : Ω → G is
holomoprhic, injective, then f |f(Ω) : Ω→ f(Ω) is a holomorphic isomorphism.

If Ω is an open region so that f : Ω → D is a holomorphic isomorphism, then if fix
z0 ∈ Ω, we have g ∈ Iso(Ω,D)→ (g(z0), g

′(z0)
|g′(z0)|) ∈ D× {|z| = 1} is a bijection.

15
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§7 February 10th, 2021

Lemma 7.1

If Ω is an open region so that f : Ω→ D is a holomorphic isomorphism, then if fix
z0 ∈ Ω, we have g ∈ Iso(Ω,D)→ (g(z0), g

′(z0)
|g′(z0)|) ∈ D× {|z| = 1} is a bijection.

Proof. We provide a sketch of the proof. Replace f with(
· − f(z0

1− f(z0)·

)
◦ f

so that f(z0) = 0.Then, Iso(Ω,D) 3 g → g ◦ f−1 ∈ Aut(D) is a bijection and(
g(z0),

g′(z0)

|g′(z0)|

)
=

(
(g ◦ f−1)(0),

(g ◦ f−1)′(0)

|(g ◦ f−1)′(0)|
f ′(z0)

|f ′(z0)|

)
so the proof reduces to the case where Ω = D and z0 = 0. It is easy to show that the
map is onto and 1-1.

§7.1 Riemann Mapping Theorem

Theorem 7 (Riemann Mapping Theorem)

Suppose Ω is simply connected and Ω 6= C. Then, there exists f : Ω → D a
holomorphic isomorphism.

Remark 7.2. There is no holomorphic isomorphism from D→ C because of Liouville’s
Theorem.

Proof. (Kobe) Let z0 ∈ Ω and F = {f : Ω→ D : f injective, f(z0) = 0, f ′(z0) > 0}. The
steps are as follows:

• F 6= ∅.

Proof. If Ω 6= C, there is a point a ∈ C \ Ω. If Ω is simply connected, there exists
h : Ω → C holomorphic with h2(z) = z − a. Then h(Ω) is open and there exists
r such that Br(h(z0)) ⊂ h(Ω). Then h2(·) = · − a is injective, so h is injective.
Then −B(h(z0), r)∩h(ω) = ∅. Otherwise, there are z1, z2 with h(z1) = −h(z2) 6= 0.
Then, we have z1 6= z2 and h(z1) = −h(z2) which implies that h2(z1) = h2(z2).

Hence, |h(z) − h(z0)| ≥ r for all z ∈ Ω. It we take p = r/2 > 0, then we have
|h(z) + h(z0)| ≥ p. Then, we find c ∈ C× so that

c
h(z)− h(z0)

h(z) + h(z0)
∈ D.

Rotating by a sufficient θ ∈ R, we have

z 7→ ceiθ
h(z)− h(z0)

h(z) + h(z0)
∈ F

16
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• Show there is f which maximizes f ′(z0) in F .

Proof. Let gn ∈ F so that limn→∞ g
′
n(z0) = supf∈F f

′(z0). Since ‖gn‖Ω ≤ 1, n ∈ N,
we can pass to a subsequence so that gn → g uniformly on compact subsets of Ω for
some holomorphic g : Ω→ C and g′n → g′ uniformly on compact sets in Ω. Hence
limn→∞ g

′
n(z0) = g′(z0) and supf∈F f

′(z0) = g′(z0) <∞ and g′(z0) > 0.

We still need to show g is injective. Let z1 6= z2, z1, z2 ∈ Ω, g(z1) = g(z2). Then
in Ω \ {z1}, gn(·)− gn(z1) 6= 0 for all points in Ω \ {z1}. By the Hurwitz theorem,
g(·)− g(z1) is either 0 or never vanishes. But g(·) is not a constant function since
g′(z0) > 0, so we have g(·)− g(z1) never vanishes on Ω \ {z1}, so g(z2) 6= g(z1), a
contradiction.

Moreoever, ‖g‖Ω ≤ 1 gives that g(Ω) ⊂ D, but by the maximum principle, we have
g(Ω) ⊂ D.

• If f ′(z0) maximal, then f is an isomorphism.

Proof. It suffices to show that g(Ω) = D. Suppose there is w0 ∈ D \ g(Ω). We
perform several modifications of g.

First, let F (z) =
√

g(z)−w0

1−w0g(z)
. This is well-defined since Ω is simply connected. Note

that F (Ω) ⊂ D and F is injective with 0 6∈ F (Ω).

Second, we make z0 go to 0. Define G(z) = F (z)−F (z0)

1−F (z0)F (z)
. Then, G is injective from

Ω→ D and G(z0) = 0.

We now show that G′(z0) > g′(z0), a contradiction. We will show that g = k ◦G,
where k : D→ D, holomorphic. The inverse of G is a fractional linear transformation

given by

(
1 F (z0)

F (z0) 1

)
.

From F to g, we take the Tw ◦ (z 7→ z2), where w is the corresponding matrix
from the initial FLT. So we have k = Tw ◦ (z 7→ z2) ◦ Th. Note that k(D) ⊂ D and

k(0) = F (z0)2+w0

1+w0F (z0)2
, so since we have F (z0)2 = −w0, we get k(0) = 0.

Since k 6∈ Aut(D), so we must have |k′(0)| < 1 by the Schwarz Lemma. It follows
that

|G′(z0)| > |k′(0)||G′(z0)| = |(k ◦G)′(z0)| = |g′(z0)|,

a contradiction.
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§8 February 17th, 2021

§8.1 Caratheodory Extension Theorem

Definition 8.1. A Jordan curve is given by a map [0, 1] 3 t → C(t) ∈ C which is
continuous, 1-1 on [0, 1] and C(0) = C(1).

Theorem 8 (Jordan Curve Theorem)

If C : [0, 1]→ C is a Jordan curve, then C \ C([0, 1]) has 2 connected components,
one if which is bounded and the other is unbounded.

We refer to the bounded component as the interior region, or the Jordan region.
We denote C([0, 1]) as |C| when C : [0, 1]→ C.

Theorem 9 (Caratheodory)

Let Γ be a Jordan curve and Ω the bounded region determined by Γ(then ∂Ω = |Γ|).
if f : D→ Ω is a holomorphic isomorphism, then f extends to a homeomorphism
D→ Ω where ∂D is mapped to ∂Ω = |Γ|.

Some remarks:

• Note that the winding of the boundary around interior points is preserved so
correspondence ∂D → ∂Ω preserves clockwise orientation(see Ahlfors for more
detail).

• It is easy to derive a more general statement for Ω1,Ω2 of Jordan curves Γ1,Γ2. So
we have homeomorphisms giving Ω1 ∪ |Γ1| = Ω1 and Ω2 ∪ |Γ2| = Ω2.

• It also tells us things about regions with slits. For instance, take D → D \ [0, 1).
By the Riemann Mapping Theorem, we have a holomorphic isomorphism between
this set and the unit disk. The boundary behaves as if [0, 1) would infinitesimally
be a double line, but we can still factor a map g : 7→ D ∩ {Im(z) > 0}. Then
the map z 7→ z2 sends this set to D \ [0, 1). Then, the homeomorphism ∂D →
∂(D ∩ {Im(z) > 0}) is given by Caratheodory.

§8.2 Rectifiable Arcs

Definition 8.2. An arc ϕ : [a, b] → C is a 1-1, continuous map is rectifiable if it has
”length”(bounded variation) that is finite:

sup
a=t0<t1<···<tk=b

k−1∑
j=0

|ϕ(tj−1)− ϕ(tj)| <∞.

If this definition is bothersome, we can make stronger assumptions about the arc being
piecewise differentiable.

First, we present an analytic continuation theorem. Here the rectificable arc will be
without endpoints ϕ : (a, b)→ C.

18
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Theorem 10

If Ω, ω are disjoint regions and Γ a rectifiable arc, so that |Γ| = ∂Ω ∩ ∂ω and
|Γ| ∩ Ω ∩ ω is open. Assume f : |Γ| ∪ Ω→ C, g; |Ω| ∪ ω → C is continuous and f |Ω,
g|ω holomorphic and f ||Γ| = g||Γ|. Then F : Ω∪|Γ|∪ω → C defined by F |Ω cup|Γ| = f ,
F ||Γ|∪ω = g is holomorphic.

Proof. We sketch the proof. Analyticity is a local property, so we only need to show that
for a point on |Γ|, there is a neighborhood where F is holomorphic. While F had no
endpoints, we take γ, a small portion of the arc. Then, for an open ball containing the
arc, we split into regions C1,C2. On this, we define

f ∗(z) =
1

2πi

∮
C1

f(ζ)

ζ − z
dζ, z ∈ Ω1 ∪ ω1,

going counterclockwise. Similarly, we define g∗(z) over the lower part. Intersection over
γ is a Stieltjes integral.

When we add the two, we get F (z) = 1
2πi

∮ F (ζ)
ζ−z dζ. This shows that F is holomorphic.
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§9 February 22nd, 2021

§9.1 Schwarz Reflection and Variants

Let Ω = Ω∗ = {z|z ∈ Ω} an open region. Suppose that Ω ∩ R ⊂ (a, b). Then,
Ω± = ω ∩ {±Im(z) > 0}. If f : Ω+ ∪ (a, b) → C continuous and f |(a,b) ⊂ R, f |Ω+

holomorphic, then

F (z) =

{
f(z), z ∈ Ω+ ∪ (a, b)

f(z), z ∈ Ω−

is holomorphic in Ω+ ∪ (a, b) ∪ Ω−.

Proof. Use the previous result with Ω = Ω+, ω = Ω−, |Γ| = (a, b) with f = f , f(·) =
g(·).

Variants:

• Suppose we set Ω+ ⊂ D, γ, an arc in {|z| = 1} ∩ ∂Ω+. We have |γ| ∪Ω+ open, and
f : |γ| ∪ Ω+ → C continuous, f |Ω+ holomorphic and f ||γ| ⊂ R.

We set

F (z) =

{
f(z), z ∈ Ω+ ∪ |γ|
f(1/z), z ∈ {1/w : w ∈ Ω+ \ {0}}

If we work on the Riemann sphere, we don’t need to remove 0, as it gets mapped
to ∞. For circles, we have OA ·OB = R2.

• Let ϕ : (a, b) → C be an Analytic arc - that there is f : ω → C univalent so
that ω ⊃ (a, b), f |(a,b) = ϕ, a holomorphic extension. (this definition avoids the
discussion of real analytic functions).

Let Ω be a region, γ an analytic arc, |γ| ⊃ ∂Ω from univalent f : ω → C and we
assume ω is chosen so that

f(ω ∩ {Im(z) > 0}) ⊂ Ω, f(ω ∩ {Im(z) < 0}) ∩ Ω = ∅.

Let F ; Ω ∪ |γ| → C continuous. F |Ω holomorphic, where F (|γ|) ⊂ |Γ|, where Γ is
another analytic arc. Then, there is Ω1 open with Ω1 ⊃ Ω ∪ |γ| so that it has F
has a holomorphic extension to Ω1 with |γ| mapping to another analytic arc.

First, after a suitable restriction, we take g−1 ◦ F ◦ f , reducing the result where we
have a segment on the real axis mapped to R. We then apply Schwarz reflection to
the segment.

• Let Ω be an inner region of a polygon(not necessarily convex). Suppose z1, . . . , zn
appear counterclockwise and αkπ, 1 ≤ k ≤ n inner angles 0 < αk < z and βkπ the
outer angles, π − αkπ = βkπ or 1− αk = βk. Then

∑
k β2 = 2(the sum of exterior

angles is 2π). A function f : Ω→ D a holomorphic isomorphism has continuous

extension to f̃ : Ω→ D by Caratheodory with f̃(∂Ω) = ∂D. We let F : D→ Ω be
the inverse map. We choose f so that f(zj) = wj, preserving the counterclockwise
orientation.

By the Schwarz Reflection, since f((zk, zk+1)) = (wk, wk+1), f has an analytic
extension across (zk, zk+1) and some neighborhood of (zk, zk+1) is mapped injectively
into a neighborhood of (wk, wk+1). Note that F has holomorphic extension into a
neighborhood of (wk, wk+1) and etc.
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§9.2 Schwarz-Christoffel Formula

F : D→ Ω is a homeomorphism which extends the inverse map ad F (wk) = zk. Ω iis a
polygon with angles αkπ, βk = 1− αk. Then

F (w) = C

∫ w

0

k∏
i=1

(w − wk)−βk dw + C ′.

Remark 9.1. This is not an explicit formula. The constants C,C ′ need to be found and
w1, . . . , wn are not known. We can fix w1, w2, w3, but not more.

Proof. Consider a map ϕ(ζ) = ζαkeiωk + zk, which maps a semicircle to the angle αkπ.
Note that ϕ extends to {|ζ| < ε : Im(ζ) ≥ 0} and maps (−ε, ε) to the corner at zk. Then

f̃ ◦ ϕ maps (−ε, ε) to an arc of the circle containing wk.

Applying the reflection principle to the segment, f̃ ◦ ϕ has an analytic extension to
the open disc of radius ε. Moreover, this extension has nonzero derivative at 0, so it has
a local inverse at wk.

So, take (f̃ ◦ ϕ)−1(w) = (w − wk)K(w) with K(wk) 6= 0 in a neighborhood of wk. But
then, in a neighborhood of wk, if w ∈ D, we have

F (w) = ϕ ◦ (f̃ ◦ ϕ)−1(w) = (w − wk)αk · eiωkK(w)αk + zk.

But K(w)αk is holomorphic near wk since K(wk) 6= 0 so we can define (the branch of)
this power in a small disc around wk. Thus, locally near wk ∈ D, we have

F (w)− zk = (w − wk)alphak ·Gk(w)

where Gk(wk) 6= 0 and holomorphic in a neighborhood of wk.
Computing the derivative, we have

F ′(w) = (w − wk)−βk(αkGk(w) + (w − wk)G′k(w))

or (w −wk)βkF ′(w) is holomorphic and nonzero near wk so F ′(w)
∏n

k=1(w −wk)βk is are
holomorphic near D.
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§10 February 24th, 2021

§10.1 Schwarz-Christoffel Formula, continued

We show that F ′(w)
∏n

k=1(w − wk)βk is a constant, via the maximum principle.

Proof. Let H(w) = F ′(w)
∏n

k=1(w−wk)βk be extended to a neighborhood of D. It suffices
to show that Im(logH(w)) is constant. Note that Im(logH(w)) = log eIm(logH(w)) =
log |e−i logH(w)|.

It suffices to show that |e−i logH(w)| is constant on the arcs (wk, wk+1). So, we show
that argH(w) is constant on the open arcs (wk, wk+1).

On (wk, wk+1), F (eiθ) takes values in (zk, zk+1), so arg iF ′(eiθ)eiθ is constant. So
argF ′(eiθ) = c− θ, for θ ∈ (θk, θk+1), where wk = eiθk .

On the other hand, arg(w−wp) = arg((ei(θ−θp)− 1)eiθp). It follows that arg(w−wp) =
C + θ/2.

This gives

argH(eiθ) = C − θ +
∑

βp(cp + θ/2) = C + (1/2
∑

βp − 1)θ,

which is a constant.

§10.2 Schwarz-Christoffel Formula on the Upper Half-Plane

If G : {Im(u) > 0} → Ω a conformal map mapping ∞ to one of the vertices, where Ω is
the interior of a polygon with outer angles β1π, . . . , βnπ, then

G(u) = C

∫ u

0

n−1∏
k=1

(u− ξk)−βk du

where ξk ∈ R(it is not really the first n− 1 angles, but the ones that aren’t coming from
infinity). If the sum β1 + · · ·+ βn−1 = 2, then βn = 0, and we have an (n− 1)-gon.

It follows from inverting the line Im(z) = 0 to a disk given by ϕ(u) = u−i
u+i

(the Cayley
Map). Then G = F ◦ ϕ and ϕ(ξk) = wk. If ξn =∞, then wn = 1. Assume wk 6= 1, from
ξk inR. Then if we let w = ϕ(u),

G′(u) = F ′(ϕ(u))ϕ′(u) = 2iF ′(ϕ(u)) · (u+ i)−2.

Then w − wk = ϕ(u)− ϕ(ξk) = Ck
u−ξk
u+i

, so it follows that

G′(u) = C

n∏
k=1

(
u− ξk
u+ i

)−βk
(u+ i)−2 = C

n∏
k=1

(u− ξk)−βk

if all the wk 6= 1. If wn = 1, then w − wn = ϕ(u) − ϕ(∞) = C(u + i)−1. We find that
G′(u) = C

∏n−1
k=1(u− ξk)−βk , from a similar computation. So if

∑
βk < 2, then ∞→ wn

and βn > 0. one of the vertices of the polygon corresponds to ∞ in the boundary of the
upper half-plane(in the Riemann sphere).
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§10.3 Triangle Functions

Take ξ1, ξ2,∞ mapped to the vertices of a triangle with angles α1π, α2π, α3π with
α1 + α2 + α3 = 1. Then

G(u) =

∫ u

0

(u− ξ1)α1−1(u− ξ2)α2−1.

We get rid of the constants by applying linear transformations to the triangles. What
can we say about the inverse function of G, g = G−1? We know that g is real on each
open side of the triangle, so g extends by reflection in a side to an additional triangle.

If we let B reflect to D in AC, then the extension of g to ADC will also take real values
on AD and DC. Also, the exnteded g will extend by reflection to ADE. The result of
the reflection in AC and AD is a rotation by 2ϕ+ ψ, where ϕ+ ψ = αkπ, so a rotation
by 2αkπ and when we preform 2 reflections, there is no more conjugation of the function.
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§11 March 1st, 2021

§11.1 Schwarz Triangle Functions

We took G(u) =
∫ u

0
(u− ξ1)α1−1(u− ξ2)α2−1 du. We can take ξ1 = 0, ξ2 = 1 after scaling.

By reflections, recall that g extends by rotations around a vertex by double the angle.
We get that g̃((z − zk)e2iαkπ + zk) where g̃ is the extension after one reflection in an
adjacent side to zk. After repeated reflections to an integer number of rotations by
nk2αkπ and this gets us back to the initial triangle. In other words, there exists nk such
that nl2αkπ = 2π. Then, g is holomorphic extended to some {0 ≤ |z − zk| < ε} and if
the corresponding point is ∞ for zk, then g is meromorphic near zk with a pole at zk;
otherwise it is holomorphic near zk. This happens when αk = 1/nk, for nk ∈ N. We have
1/n1 + 1/n2 + 1/n3 = 1 with n1 ≤ n2 ≤ n3. This has 3 solutions (3, 3, 3), (2, 4, 4) and
(2, 3, 6). We can combine these rotations around vertices to get invariance under shifts.
In the end, g is meromorphic with two periods g(z + Lk) = gk for k = 1, 2. These are
called the Schwarz Triangle Functions.

§11.2 Conformal Mappings of Rectangles

We can arrange so that the points are mapped from −1/k,−1, 1, 1/k with 0 < k < 1 and

G(u) =

∫ u

0

du√
(1− u2)(1− k2u2)

.

We consider how G maps the boundary of H onto R ∪ {∞}. We have that G(0) = 0

and if K =
∫ −1

−1
du√

(1−u2)(1−k2u2)
, then G maps [−1, 1] to [−K/2, K/2]. When u ∈ (1, 1/k),

then if K ′ =
∫ 1/k

1
du√

(u2−1)(1−k2u2)
, then the boundary moves along [K/2, K/2 + iK ′].

Similarly, (−1/k,−1) goes to (−K/2 + iK ′,−K/2).
Finally, the cases where (−∞,−1/k) and (1/k,∞) are symmetric, and the integrand

is real, so ∞ goes to the middle of (−K/2 + iK ′, K/2 + iK ′) and (−∞,−1/k) goes to
(iK ′,−K/2 + iK ′).

Then. the inverse function g is real on the boundary of the rectangle and can be
extended by reflection. We find that g(z + 2K) = g(z) and g(z + 2iK ′) = g(z) and g has
a pole at iK ′ and K+ iK ′ and zeros at 0 and K so we have poles at nK+2(m+1)K ′iand
zeros at nK + 2mK ′i.
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§12 March 3rd, 2021

§12.1 Elliptic Integrals and Functions

Recall we had a conformal mapping of rectangles given by

G(w) =

∫ w

0

dw√
(1− w2)(1− k2w2)

0 < k < 1.

This is an example of a basic elliptic integral. More generally, we have∫ w

0

R(w,
√
P (w)) dw

where R is a rational function and P is a polynomial of degree 3 or 4. Then, the inverse
g = G−1 is an elliptic function: doubly periodic and meromorphic.

§12.2 Tiling the Unit Disk

We tile the unit disk. We can tile the disk with a curvilinear triangle with arcs that are

geodesics with respect to the hyperbolic metric |dz|2
(1−|z|2)2

. We start with the equilateral

triangle with vertices at i, ie2πi/3, and ie−2πi3. If we reflect i with respect to the lower
arc, it is mapped to −i. We do the same for the other vertices, and we repeat this to
get an Escher-like picture. All the arcs are the same size with respect to the hyperbolic
metric.

Now, if we consider a mapping from the Escher picture to the upper-half plane, it should
be invariant under some group of fractional linear transformations, namely SU(1, 1). So,
we look for a way to pass from SU(1, 1)→ SL(2,R).

We can map our points to 0, 1 and ∞. (Did you know conformal mappings preserve
angles?) We wish to understand what happens when we reflect about this figure. When
we reflect about the lines, we have the usual reflection. Before doing this, we precisely
describe the connection between the two figures. Namely, the transformation is given by
the cross ratio (z, ie−2πi/3, ie2πi/3, i)(recall that it makes the second point to 0, third to
1 and last to ∞). We can understand what’s happening by noting that when we map
Jordan domains to Jordan domains, they preserve orientation. Note that 0, 1,∞ are
counterclockwise. Writing down the mapping

z 7→ z − ie2πi/3

z − i
:
ie−2πi/3 − ie2πi/3

ie−2πi/3 − i
.

Notice that the second fraction is equal to eπi/3− sin(2π/3)
− sin(π/3)

= eπi/3. This is a counter-

clockwise rotation by 60◦. Hence z 7→ e−πi/3 z−ie
2πi/3

z−i . Note that the reflections are given

by z 7→ −z for 0,∞ z 7→ −z − 1 + 1 = z − z for 1,∞ and z 7→ 1/4

z−1/2
+ 1/2. Composing

the rotations, we have z + z and z
2z+1

. These give two elements of SL(2,R), so it follows
that Γ, the free group of invariant transformations generated by these two elements. This
subgroup of SL(2,R) will also be important later.

§12.3 Schwarz-Christoffel Revisted

We will use the Schwarzian derivative, which is similar to the role of the logarithmic
derivative in the Schwarz-Christoffel formula.
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Note that the Schwarz-Christoffel formula is given by

F ′ = c
n∏
k=1

(w − wk)−βk

and we get that
F ′′

F ′
= (logF ′)′ = C +

∑ −βk
w − wk

.

[The constant might not be necessary.]
The Schwarzian derivative is given by

S(f) =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

=

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

There are some interesting properties of S(f):

• S(f ◦ g) = (S(f) ◦ g)(g′)2 + S(g).

• For f(z) = az+b
cz+d

, S(f) = 0.

• Combining the results, S(g) is invariant under fractional linear transformations.
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§13.1 Schwarzian Derivative

Recall that for a fractional linear transformation f , S(f) = 0, where S is the Schwarzian
derivative.

Proposition 13.1

If S(f) = S(g) and g−1 exists, then f = ag+b
cg+b

, with ad− bc 6= 0.

Proof. Write f = h ◦ g. Then S(f) = (S(h) ◦ g)(g′)2 +S(g) and h = f ◦ g−1, so it follows
that S(h) = 0.

Then, we claim S(h) = 0 implies that h = az+b
cz+d

. Let y = h′′

2h′
= 1

2
(log h′)′. Since

S(h) = 0, we have y′ = y2, so (−1/y)′ = 1, so y = − 1
z+c

. This implies that −1/2(log h′)′ =
(log(z + c))′, so (z + c)2h′ = a and h′ = a

(z+c)2
. Therefore, h = b− a

z+c
, which implies the

result.

Given S(f) = 2p, we wish to recover the function.

Fact 13.2. Given two linearly independent solutions y1, y2 of y′′ + py = 0, then u = y1
y2

is so that S(u) = 2p.

Proof. Given y1 = uy2, we have y′′2 + py2 = 0 so it follows that

u′′y2 + 2u′y′2 + uy′′2 + puy2 = u′′(y2) + 2u′y′2 + u(y′′ + py2) = 0,

so it follows that u′′/u′ = −2y′2/y2.
It follows that

S(u) = (u′′/u′)′ − 1/2(u′′/u′)2

= −2(y′2/y2)′ − 1/2(2y′2/y2)

= −2
y′′2y2

y2
2

= 2p.

Remark 13.3. This is well defined because any pair of solutions is connected by a
fractional linear transformation, which has a null Schwarzian derivative.

§13.2 Curvilinear Polygons

This case is more complicated than Schwarz Christoffel because the radius of curvature
for the arcs between vertices are not uniform.

We can show that

S(f) =
1

2

∑
k

1− α2
k

(z − αk)2
+
∑
k

βk
z − αk

+ γ.
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Take n = 3. The constants are determined by α1, α2, α3(we change this to α, β, γ).
The equation

u′′ +
p

2
u = 0

can be replaced by
u′′ + Pu′ +Qu = 0,

where we have solutions yi 7→ σ(z)yi. The new equation is given by

z(1− z)y′′ + (c− (a+ b+ 1)z)y′ − aby = 0,

which has solutions

c

∫ 1

0

tb−1(1− t)c−b−1(1− zt)−a dt,

the hypergeometric functions .

Proposition 13.4

If α = β = γ = 0, then f(z) = T (z)
T (1−z) , where

T (z) =

∫ 1

0

dt√
t(1− t)(1− zt)

.
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§14 March 10th, 2021

Recall last time, upon composing reflections where 0, 1,∞→ 1,∞, 0 and extending the
half plane, we obtain the modular function λ which sends az+b

cz+d
→ λ(z).

§14.1 The Modular Function

Theorem 14.1 (Picard)

If g : C→ C holomorphic such that |C \ g(C)| > 1, then g is constant.

Proof. We may assume that C \ g(C) ⊃ {0, 1}. Because of the way that λ was extended
to {im z > 0} via reflections and fractional linear transformations, one can find h :
C → {im z > 0} so that λ ◦ h = g. Note that C \ {0, 1} is a covering of {Im(z) > 0},
and λ acts as a simply connected covering map. Then, there exists a lifting map from
C→ {im(z) > 0}, which we define as h.

Now, we can apply Liouville’s theorem to h since im(h) > 0.

§14.2 Analytic Functions

If f is a meromorphic function with a pole at b, it has a Laurent expansion

∞∑
k=−N

ck(z − b)k.

The term
∑−1

k=−N ck(z − b)k is called the principle part. We can develop the theory for
meromorphic functions in Ω = C.

Theorem 14.2 (Mittag-Leffler)

Given bn ∈ C, n ∈ N, limn→∞ |bn| =∞ and principle parts
∑−1

k=−Nn c
(n)
k (z−bn)k = Pn,

there is a meromorphic function on C with poles (bn)n∈N and principal parts pn of
the Laurent expansions at the poles.

Proof. Roughly, we would want
∑
Pn, but this might not converge. If it doesn’t converge,

we make it convergent by adjusting the function in a way that doesn’t change the principal
parts. Define Rn = infk≥n |bk|. Note that Rn ↑ ∞. Then, if Rn > 0, Rn

2
< |bm| for m ≥ n.

Since Pn is holomorphic in RnD, there exist polynomials pn so that ‖Pn − pn‖Rn/2D <
2−n(assuming Rn > 0).

Then
∑

m≥n(Pm−pm) converges uniformly on compact subsets Rn/2D to a holomorphic
function on Rn/2D. On the other hand,

∑
m<n(Pm − pm) is meromorphic and has the

same poles and principles parts as
∑

m<n Pm. It follows that
∑

n(Pn − pn) converges on
compact subsets of C \ {bn : n ∈ N} with the desired properties.

Remark 14.3. Note that if f, g are mermorphic on C with poles bn and principal parts Pn,
n ∈ N, then f − g is holomorphic on C. Also, having f , we can get any other merormophic
function with these properties by adding an entire function.
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§14.3 Cool Series Expansions

We will give a series expansion for π2

(sinπz)2
. Namely, we construct a merormorphic function

with the same poles and principle parts and determine the difference.
Note that the poles are given by the points z ∈ Z. The order of the zeros are given

by (sin πz)′ = π cos πz. For k ∈ Z, cos πk = 1, so the zeros are simple. The poles of
π2/(sin πz2) are order 2 at n ∈ Z. Note that it is periodic of period 1. To compute the
principle part, we compute the principal part at z = 0. Note that π2/(sin πz2) is an even
function with a pole of order 2 so the principle part is even, so it is a/z2, where

a = lim
z→0

π2

(sinπz)2
z2 = (lim

z→0

sin πz

πz
)−2 = 1.

The principle part at z = n is thus given by 1/(z − n)−2. Note that
∑

n∈Z
1

(z−n)2

converges uniformly on compact subsets of C \ Z.
It follows that ∑

n∈Z

1

(z − n)2
− π2

(sin πz)2

is holomorphic on C. Next time, we prove that it is exactly 0.
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§15 March 15th, 2021

§15.1 Cool Series Expansion, continued

Theorem 15.1 (Mittag-Leffler)

Given bn ∈ C, n ∈ N, limn→∞ |bn| =∞ and principle parts
∑−1

k=−Nn c
(n)
k (z−bn)k = Pn,

there is a meromorphic function on C with poles (bn)n∈N and principal parts pn of
the Laurent expansions at the poles.

We applied this to find a series expansion of π2

sinπz2
. We reduced it to an entire function

h = f1 − f2 holomorphic with f1(z + 1) = f1(z), f2(z + 1) = f2(z), which implies that
h(z + 1) = h(z). We show that h = 0 exactly. We do this by showing it is a bounded
function which implies that it is zero by the Louiville theorem.

Proof. Let A(R) = {|Im(z)| ≥ R}We claim that ‖h‖A(R) → 0 as R → ∞. We do this
by showing it for both f1 and f2. Note that

| sinπ(x+ iy)| ≥ 1

2
|eπy − e−πy|,

so it follows that ∥∥∥∥ π2

sin πz2

∥∥∥∥
A(R)

≤ 4π2

|eπR − e−πR|
R→∞−−−→ 0.

For f2, |Im(z)| ≥ R so

|
∑

(z− n)−2| ≤
∑
|z− n|−2 ≤

∑
((x− n)2 +R2)−1 ≤ R−2 +

∑
(n2 +R2)−1 R→∞−−−→ 0.

It follows that

‖h‖C ≤ ‖h‖|Re(z)|≤1/2 ≤ ‖h‖|z|≤R + ‖h‖|Im(z)≥R/2| <∞.

Then h = C. Since |C| = ‖h‖Im(z)≥R → 0, it follows that C = 0. Therefore,

π2

sin πz2
=
∑
n∈Z

1

(z − n)2
.

Can we make sense of
∑

n∈Z
1

z−n? We can write

1

z
+

∑
n∈Z\{0}

1

z − n
+

1

n
.

The counterterms are suitable because 1
z−n + 1

n
= z

n(z−n)
, so for R > 0, |n| ≥ R+ 1implies

that

‖z/(n(z − n))‖RD ≤
R

|n|(|n| −R)
,

so it follows that ∑
|n|≥R+1

R

|n|(|n| −R)
<∞.
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Alternatively, note that
∑

0<|n|<N 1/n = 0 so

lim
N→∞

∑
|n|≤N

1

z − n
=

1

z
+

∑
n∈Z\{0}

1

z − n
+

1

n
.

If we denote gn(z) =
∑
|n|≤N

1
z−n , this is called the Eisenstein summation by Andre Weil,

the author of the Weil Conjectures.
Then gN(z) is uniformly convergent on compact subsets of C \ Z. From this, we can

compute g′N (z) which is uniformly convergent on compact subsets of C \Z. Furthermore,

g′N(z) = −
∑
|n|≤N

1

(z − n)2
→ − π2

sin πz2
.

Note that this is also the derivative of π cotπz, so it follows that g = π cotπz + C.
We can show the C = 0 using the fact that cot is odd, namely, g(z) = −g(−z)(the

symmetric sums are all odd functions).

§15.2 Infinite Products

A polynomial with zeros z1, . . . , zn is P (z) =
∏

1≤k≤n(z−zk). Given a sequence z1, z2, . . .
with |zk| → ∞, can we find a holomorphic function f : C→ C with these zeros? This is
a theorem of Weierstrass.

Remark 15.2. One reason why this can be strange is because we can approach numbers
from different directions and obtain different convergence behavior.

Let zk ∈ C \ {0}.

Definition 15.3.
∏

k≥1 zk is convergent if limn→∞
∏n

k=1 zk exists and is nonzero. We
denote log z if z 6= 0 the set {a ∈ C : ea = z} and by Log(z), the number a ∈ R+ i(−π, π]
so that ea = z. Similarly, arg z = Im(log z) and Arg(z) = Im(Log(z)).

Fact 15.4.
∏

k≥1 zk convergent if and only if
∑

k≥1 Log(zk) is convergent.

Fact 15.5.
∏

k≥1 zk convergent, then zk → 1.

Proof. If we put Pn =
∏

1≤k≤n zk and Sn =
∑

1≤k≤n Log(zk), then limn→∞ S, then

eS = limn→ infty e
Sn = limn→∞ Pn, so limn→∞ Pn = es 6= 0.

Conversely, suppose limn→∞ Pn = P 6= 0. Then Pn/P → 1, so log(Pn/P )→ 0. Then
Log(Pn/P ) = Sn − Log(P ) + 2πihn for some hn ∈ Z. Note that

2πi(hn+1 − hn) = Log(Pn+1/P )− Log(Pn/P )− Log(zn+1),

and the right hand side is 0 for large n. Indeed, there is an ε > 0 so that |a − 1| < ε,
|b − 1| < ε so we have Log(ab) = Log(a) + Log(b), and we can show that h = limhn
exists which implies the convergence.

Definition 15.6.
∏

k≥1 zk is absolutely convergent if
∑

k≥1 |Log(zk)| <∞.

Fact 15.7.
∏

k≥1 zk is absolutely convergent if and only if
∑

k≥1 |zk − 1| <∞.

Proof. It follows from noting that the derivative of Log(z) at 1 is 1.

This allows us to permute terms in products when we have absolute convergence.
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§16 March 17th, 2021

§16.1 Weierstrass Theorem

Our goal is to construct holomorphic functions with prescribed zeros on C. We have
an ∈ C and |an| → ∞(so that we don’t have accumulation points). A zero of order m at

zero would be handled by zm and an 6= 0. This gives zm
∏∞

n=1

(
1− z

an

)
, so that when

an becomes large, the term becomes small. This issue is that this may not converge.

Remark 16.1. Take |ζ| < 1. Then 1−ζ 6= 0 and Re(1−ζ) > 0, Arg(1−ζ) ∈ (−π/2, π/2).
The series expansion of log(1 − ζ) is −

∑
k≥1 ζ

k/k and we replace with Log so that it
uniformly converges.

To make
∑

n≥1 Log(1− z/an) uniformly convergent on compact subsets, we take Rn =
infk≥n |ak| and choose a polynomial pn so that

‖Log(1− z/an)− pn(z)‖Rn/2DM2−n.

We can choose pn(z) = −
∑kn

k=1(z/an)k/k where kn so that∑
k>kn

|(Rn/2)/an|k1/k < 2−n.

Then, |z| ≤ Rn/2 implies that the choice of kn is correct. Now, we define gn(z) =
Log(1−z/an)−pn(z) = Log(1−z/an)+

∑kn
k=1(z/an)k/k. It follows that ‖gk‖Rn/2D < 2−k

for k ≥ n so it follows that
∏

k≥n e
gk is convergent so that ‖egk − 1‖Rn/2D < e2−k − 1 and∏

k≥n e
gk converging uniformly on Rn/2D. Thus,

P = zm
∞∏
n=1

(1− z/an)ez/an+···+zkn/aknn ·1/kn

is uniformly convergent(after omitting the zero terms) on a given compact set of C. Then
P is a holomorphic function on C with zeros an(with multiplicities respected). If f is
a holomorphic function on C with the same zeros then f/P and P/f are holomorphic
entire functions so f/p = eg for some holomorphic g on C. Hence, we have proved the
following theorem:

Theorem 16.2 (Weierstrass)

Given an ∈ C, |an| → ∞, there exists a holomorphic function on C with precisely
these zeros. Every holomorphic function on C with these zeros, an 6= 0 and zero of
multiplicity m at 0 is

f(z) = zmeg(z)
∏
n≥1

(1− z/an) exp(z(/an + · · ·+ (z/an)kn) · 1/kn)

for some kn ≥ 0 and g holomorphic on C.

Corollary 16.3

If f is meromorphic on C, then there are f1, f2 holomorphic so that f = f1/f2.
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Proof. The Weierstrass theorem gives f1 with some zeros as f and f2 with zeros same as
the poles of f , so f1/f2 = egf , with g holomorphic on C. Replace f1 with f1e

−g so that
f1/f2 = f .

§16.2 Cohomology Aspects

We remarked before that Mittag-Leffler and Weierstrass relate to sheaf cohomology.
Roughly, a sheaf of sets is defined as follows. We have a topological space, as for each
open set, we have a functor mapping this to a set of real valued continuous functions
on the set. If we take a two open sets with A ⊂ B then every continuous function on
B restricts to a continuous function on A, so we have a contravariant functor. We also
want the property that if we have sets Ui, Uj open and if the functions on Ui ∩ Uj give
the same thing, then we have some global function with the same properties. We can
also take a different Abelian category instead of a set. We can define a cohomology on
this via Cech Cohomology: given open sets, we take the Cech cocycle so that with the
intersection of two sets, we have two functions with are compatible with each other on
the intersection.

The problems that are solved by Mittag-Leffler and Weierstrass solve cohomological
problems with the sheaf of holomorphic functions with additive structure and the sheaf
of nonvanishing holomorphic functions that don’t vanish, which is a sheaf of Abelian
groups with respect to multiplication.

Consider Mittag-Leffler. We have Pk principle parts with poles of ak. Take covers
(Ui)i∈I covers of C with bounded open sets. Define ϕi =

∑
{k:ak∈Ui} Pk, a finite sum, and

ϕi meromorphic in Ui. Then, ϕi − ϕj = hij is holomorphic on Ui ∩ Uj. One can verify
that this hij satisfies the cocycle properties. If we can find hi holomorphic on Ui so
that hi − hj = hij on Ui ∩ Uj, the (ϕi − hi)|Ui∩Uj = (ϕj − hj)Ui∩Uj(this is a coboundary
condition). But this is exactly solving the Mittag-Leffler problem.

This is the Cousin problem(additive): given hij holomorphic on Ui∩Uj , hij+hjk+hki = 0
on Ui ∩Uj ∩Uk and hij = −hji on Ui ∩Uj . We want to find hi holomorphic on Ui so that
hi − hj = hij on Ui ∩Uj . Note that Cousin problem has a solution implies Mittag-Leffler.

For the Weierstass Theorem, we have ϕi =
∏

k|ak∈Ui(z − ak), and ϕi/ϕj = gij holomor-

phic, invertible on Ui ∩ Uj. We need gi holomorphic invertible on Ui so that gi/gj = gij
on Ui ∩ Uj. Then, ϕi/gi = ϕj/gj on Ui ∩ Uj and there is f holomorphic on C so that
f |Ui = ϕi/gi.

This is the Cousin problem(multiplcative): given gij 6= 0 holomorphic on Ui ∩ Uj with
gij = g−1

ji , gijgjkgki = 1 on Ui ∩ Uj ∩ Uk. We wish to find gi holomorphic and nonzero on
Ui so that gi/gj = gij on Ui ∩ Uj.
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§17 March 29th, 2021

§17.1 Infinite Products

Recall that given an 6= 0, |an| → ∞, m order of zero at 0, there are kn ≥ 0 integers so
that

P (z) = zm
∏
n≥1

(1− z/an)e(z/an+···+(z/an)kn )(1/kn)

is a uniformly absolutely convergent product that gives a holomorphic function with
prescribed zeros. Any other holomorphic function with these zeros is eg(z)P (z) for some
holomoprhic function g on C.

How do we choose kn? If we take a subsequence of the kn so that
∑

j 1/|anj | < ∞,
then we can choose knj = 0. We can also set any finite number of them to 0 without
issues. If we assert that all the kn’s must be equal, what is the proper choice of kn = k?
These are called the canonical products. Furthermore, if f : C → C is holomophic
and f = eg(z)P (z), f has finite genus if P is a canonical product and g is a polynomial.

In the proof of the Weierstrass theorem, we had

‖Log(1− z/an) +
kn∑
m=1

(z/an)m/m‖ρD ≤
∑
m>kn

(ρ/|an|)m/m,

which is convergent for |an| > ρ.
So
∑

n

∑
m>(ρ/|an|)m1/m <∞, which implies convergence of the canonical product.

Howevr, note that only the first term matters since

(ρ/|an|)h+1/(h+ 1) ≤
∑
m>h

(ρ/|an|)m/m ≤ (ρ/|an|)m+1/(m+ 1)
1

1− ρ/an
.

Since ρ < |an|, our series converges properly. It follows that
∑

n 1/|an|h+1 <∞ implies
the convergence of the canonical product. We define genus(P ) = inf{h ∈ Z, h ≥
0|
∑

n 1/|an|h+1 <∞}.

Definition 17.1. If f : C→ C has finite genus, we define genus(f) = max(deg g, genus(P )).

• If f is genus zero, then f(z) = Czm
∏

n≥1(1 − z/an) with the assumption that∑
1/|an| <∞.

• If f is genus 1, then we have f(z) = Czmeαz
∏

n≥1(1−z/an)ez/an and
∑

1/|an| =∞
but

∑
1/|an|2 < ∞ OR we have that f(z) = Czmeαz

∏
n≥1(1 − z/an) for α 6= 0

and
∑

1/|an| <∞.

• Take f(z) = sin πz, with zeros at the integers. Then,
∑

n∈Z\{0} 1/|n| = ∞,∑
n∈Z\{0} 1/n2 < ∞. We can consider the canonical product P = z

∏
n∈Z\{0}(1−

z/n)ez/n, which is of genus 1. Then, sin πz = egz
∏

n∈Z\{0}. Recall that the
logarithmic derivative gives

π cotπz = g′ + 1/z +
∑
n∈Z×

(1/n+ 1/(z − n)).

We recall that the right term is g′ + π cot πz, so it follows that g′ = 0 and g = C.
We can solve for C by noting that eCz

∏
n∈Z×(1 − z/n)ez/n = sin πz. We can

divide by z and taking limits, we obtain that eC = π, so it follows that C = log π.
It follows that sin πz = πz

∏
n∈Z×(1 − z/n)ez/n. We could also write this as

πz
∏

n≥1(1− z2/n2) = sin πz.
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§17.2 Hadamard’s Theorem

We can relate to the growth of a holomorphic function f : C→ C and the order of the
growth

ρ− lim sup
R→∞

log log ‖f‖RD
logR

.

We could also write
ρ = inf{m ≥ 0 : |f(z)| ≤ CeC|z|

m}.

Theorem 17.2 (Hadamard)

If ρ order of growth of f , h genus of f , then ρ ∈ [h, h+ 1).

Next time, we use the construction of the Gamma function and we follow the proof
of Ahlfors which considers the zeros. We somehow end up with the Gamma function
G(z − 1) = zeγ(z)G(z) for an entire function γ.
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§18 March 31st, 2021

§18.1 The Gamma Function

Consider the canonical product for the zeros {−1,−2, . . . }, which leads to

G(z) =
∏
n≥1

(1 + z/n)e−z/n.

G(z− 1) has zeros {0,−1,−2, . . . }, hence G(z− 1) = zeγ(z)G(z) for an entire function γ.
If we take the logarithmic derivative, we obtain∑

n≥1

1/n

1 + (z − 1)/n
− 1/n = γ′(z) + 1/z +

∑
n≥1

(1/n/(1 + z/n)− 1/n),

and from here, we can obtain γ′(z) = 0 via a telescoping series. Hence, γ(z) = γ, for a
constant γ, which happens to be the famous Euler-Mascheroni Constant. IT follows that
G(z− 1) = eγzG(z). If we define H(z) = eγzG(z), then it follows that H(z− 1) = zH(z).

Take z = 1. We have G(0) = eγG(1) and G(0) = 1 so 1 = eγ
∏

n≥1(1 + 1/n)e−1/n.
Taking the logarithm, we obtain

−γ = lim
N→∞

N∑
n=1

(log(n+ 1)− log n)− 1/n,

but this gives a telescoping sum with exactly the limit lim log(N)− (1 + · · ·+ 1/N). This
is exactly the Euler-Mascheroni constant.

Define Γ(z) = 1
zH(z)

. Then,

Γ(z + 1) =
1

(z + 1)H(z + 1)
=

1

H(z)
=

z

zH(z)
= zΓ(z).

From the definition of Γ, it follows that Γ(z) is a meromorphic function with poles at
−N, no zeros, and Γ(z + 1) = zΓ(z).

Writing this explicitly, we have

Γ(z) = z−1e−γz
∏
n≥1

(1 + z/n)−1ez/n .

If we take G(−z)zgG(z) = z
∏

n∈Z×(1− z/n)ez/n = sinπz
π
. Then, noting that G(z) =

e−γzH(z) = e−γz

zΓ(z)
, we find that

π

sin πz
= Γ(z)Γ(1− z).

§18.2 Particular Values of Γ

It is clear that Γ(1) = limz→0 Γ(1 + z) = limz→0 zΓ(z) = 1. So we obtain the value of
Γ(n) for each n ∈ N, namely, Γ(n+ 1) = n!, which is clear by induction.

Note that
Γ(1/2)2 = Γ(1/2)Γ(1− 1/2) =

π

sin π/2
= π.

It follows that

Γ(n+ 1/2) =
√
π

1

2

3

2
. . . (n− 1/2),

for n ≥ 0.
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§18.3 Alternate Definition of Γ

Take I(z) =
∫∞

0
tz−1e−t dt. We will show that I(z) extends to a meromorphic function

on C which is exactly Γ(z).
We can write I(z) = I1(z) + I2(z) where we take the same integrals but from 0 to 1

and 1 to ∞ respectively. Note that |tz−1e−t| = tx−1e−t if z = x+ iy.It follows that∫ 1

0

|tz−1e−t| dt =

∫ 1

0

tx−1e−t dt ≤
∫ 1

0

tx−1 dt.

This is finite whenever x > 0, so I1(z) is defined if Re(z) > 0. I2 is ”very” convergent,
the exponential decay handles the polynomial term.

We can show that I1 holomorphic function on {Re(z) > 0}. This requires the machinery
of the Dominated Convergence Theorem, but roughly we differentiate under the integral
sign and pass the derivatives onto the exponential terms. We can also show the second
integral is defined for z ∈ C and holomorphic via differentiation under the integral.

We can show the recurrence relation I(z + 1) = zI(z) for Re(z) > 0 via integration by

parts with an approximating integral
∫ b
a
tze−t dt and taking the limit as a ↓ 0 and b ↑ ∞,

where the boundary terms vanish. We can also show directly that I(1) = 1, so I(z) and
Γ(z) satisfy the same recurrence relation if Re(z) > 0.

Now, define ψ(z) = I(z)
Γ(z)

, which is well defined Re(z) > 0, is holomorphic, and

ψ(z + 1) = ψ(z).
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§19 April 5th, 2021

§19.1 Gamma Function, continued

Last time, we defined ψ(z) = I(z)
Γ(z)

which is a holomorphic function on the real half place

with the relation ψ(z + 1) = ψ(z), where I(z) is the integral formulation of the Gamma
function.

We begin by taking A(y) = sup1≤x≤2 |ψ(x+ iy)|. Then,

sup
1≤x≤2

|I(x+ iy)| ≤ sup
1≤x≤2

∫ ∞
0

tx−1e−t dt = C <∞.

Then,

sup
1≤x≤2

1

|Γ(x+ iy)|
≤ |2 + iy|e2γ sup

1≤x≤2
|
∏
n≥1

(1 + (i+ iy)/n)e−x/n| (1)

≤ C(1 + |y|) sup
1≤x≤2

∏
n≥1

|1 + x/n||1 + iy/n|e−x/n (2)

≤ C(1 + |y|) ·
∏
n≥1

(1 + y2/n2)1/2 (3)

using the inequality a > 0 =⇒ |1 + a+ ib| ≤ |1 + a||1 + ib| in (2) and (1 +x/n)e−x/n ≤ 1
for x > 0 in (3).

Then, recall that sinπz
πz

=
∏

n≥1(1− z2/n2), so it follows by taking z = iy that if |y| ≥ 1,

sup
1≤x≤2

1

|Γ(x+ iy)|
≤ C(1 + |y|)| sin πiy/(πiy)|1/2

≤ C(1 + |y|)((eπ|y| + e−π|y|)/(2π|y|))1/2

≤ C(1 + |y|)eπ/2|y|

≤ Ceπ|y|

It follows that A(y) ≤ Ceπ|y|. Since ψ(z + 1) = ψ(z), we plug in ψ(logw/2πi) for
w ∈ C \ {0} which does not depend on the choice of branch of the logarithm. Hence,
ψ(logw/2πi) = h(w) is a holomorphic function since log is locally invertible.

Then, h(e2πiz) = ψ(z) and if z = x+iy, eπ|y| = max(eπy, e−πy) = max(|e2πiz|1/2, |e2πiz|−1/2).
Hence, |h(w)| ≤ C(|w|1/2, |w|−1/2) for w ∈ C \ {0}.
Then, the Laurent expansion of h is

h(w) =
∑
n∈Z

cnw
n

and

cn = (2πi)−1

∫
|w|=R

w−n−1h(w) dw.

From the bounds on h, we obtain

|cn| ≤ 1/2π2πRR−n−1 max(R1/2, R−1/2) = CR−n max(R1/2, R−1/2).

If n > 0, then |cn| ≤ C limR→∞R
−n+1/2 = 0. Otherwise, we take |cn| ≤ C limR→0R

|n|−1/2 =
0. So h = c0 and ψ is constant. It follows that I(z) = cΓ(z) for Re(z) > 0 and
Γ(1) = 1 = I(1) implies that c = 1.

Hence, we obtain

Γ(z) =

∫ ∞
0

tz−1e−t dt Re(z) > 0.
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§19.2 Complex Stirling Formula

Γ(z) =
√

2πzz−1/2e−zeJ(z), Re(z) > 0 where

J(z) =
1

π

∫ ∞
0

z

η2 + z2
log

1

1− e−2πη
dη.

If |z| → ∞, z ∈ {Re(z) ≥ c}, c > 0, then J(z)→ 0.

§19.3 Gamma function Heuristics

If f : R→ C is a function so that
∫
R |f(t)| dt <∞, then one can define

∫
R f(t)eixt dt =

Ff(x). This is the Fourier transform, which is a special case of more general transforms.
More generally, we have an abelian group G with the topology compatible with the
group structure(this is generally locally compact Hausdorff). An integral

∫
G
f(g) dg for

functions f : G→ C so that the integral is invariant under translations: namely∫
G

f(g) dg =

∫
G

f(g1g) dg.

The map f 7→
∫
G
f(g) dg is a linear map. We could hence define the general Fourier

transform as ∫
G

f(g)χ(g) dg = Ff(χ),

where χ : G 7→ {|z| = 1} is a continuous group homomorphism.
We can also define a complex Fourier transform∫

R
f(t)ezt = Ff(z), z ∈ C

We can also generalize the Haar Fourier transform by taking homomorphisms χ : G→ C×.
If we take G = ((0,∞), ·) positive numbers with multiplication, this is isomorphic to

(R,+) with an isomorphism given by t 7→ et forward and λ 7→ log γ backwards.
The continuous homomorphisms from (0,∞)→ C× are χ(λ) = λz, z ∈ C.
The invariant integral is ∫ ∞

0

f(λ)
dλ

λ
.

The Mellin transform is the complex Fourier transform on ((0,∞), ·), namely∫ ∞
0

λzf(λ)dλ/λ =

∫ ∞
0

λz−1f(λ)dλ.

To obtain I(z), we take f(λ) = e−λ. Then t 7→ e−t is a homomorphism from (R,+)→
C×. We can identify (0,∞) with the squares of R×.

This process can be generalized. We will mention this next time.
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§20 April 7th, 2021

§20.1 Mellin Transform

Some examples of Haar Measures:

• For G = R, the corresponding Haar Measure is
∫
R f(t) dt.

• For G = Z,
∑

n∈Z f(n).

• For G = {|z| = 1},
∫ 1

0
f(e2πit) dt.

• G = (R+, ·) ∼= (R,+), we have
∫∞

0
f(λ)dλ

λ
.

Last time, we mentioned that if we take characters χ : (0,∞) → C× of the form
χ(t) = tz, then,

Ff(χ) =

∫ ∞
0

tz−1f(t) dt =

∫ ∞
0

f(t)tzdt/t.

When f(t) = e−t, we exactly recover the Gamma function:

Γ(z) = Ff(χ) =

∫ ∞
0

tz−1e−t dt.

What if we take a more general character f(t) = e−λt. If we assume λ > 0, then the
integral ∫ ∞

0

tze−λtdt/t =

∫ ∞
0

(t/λ)ze−λ(t/λ)dt/t = λ−z
∫ ∞

0

tze−tdt/t = λ−zΓ(z).

Replace e−λt by a sum g(t) =
∑

n cne
−λnt with λn ↑ ∞, λn > 0.

Formally, the Mellin Transform of g(t) is∫ ∞
0

tz
∑

cne
−λntdt/t = Γ(z)

∑
n

cnλ
−z
n .

§20.2 Riemann Zeta Function

Take g(t) =
∑

n≥1 e
−nt. Note that g(t) = 1

et−1
. The Mellin transform of this is∫ ∞

0

tz

et − 1

dt

t
= Γ(z)

∑
n≥1

n−z = Γ(z)ζ(z).

Note that (et − 1)−1 ∼ t−1 as t ↓ 0 so we need Re(z) > 1 for convergence. More
generally, we could use g(t) =

∑
n≥1 e

−nkt for an integer k > 1, which has Mellin transform
Γ(z)ζ(kz).

We will explain the k = 2 relation, namely∫ ∞
0

∑
n≥1

e−n
2tdt/t = Γ(z)ζ(2z),

which holds if Re(z) > 1/2.
The convergence requires

∑
n≥1 e

−n2t ≤ C/
√
t for t > 0. We can estimate this by

comparing with the corresponding integral, which gives the desired result. We replace with
the theta function θ(t) =

∑
n∈Z e

−πn2t so that θ(t) = 2ψ(t)+1, where ψ(t) =
∑

n≥1 e
−πn2t.
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Note the following fact θ(t) = θ(1/t)/
√
t if t > 0. The key to proving this is the

Poisson summation formula, namely∑
n∈Z

f(n) =
∑
n∈Z

Ff(n).

We apply this to e−ct
2

for some c.
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§21 April 12th, 2021

§21.1 Poisson Summation Formula

We were proving Θ(t) = 1/
√
tΘ(1/t), t > 0 where Θ(t) =

∑
n∈Z e

−πn2t. This is done via
the Poisson Summation formula.

We first present the proof of the Poisson Summation formula. We have an exact
sequence

0→ Z→ R→ R/Z→ 0.

The map from functions on R to a function on R/Z is given by f 7→
∑

n∈Z f(t+n). If we
take a Fourier Transform on R/Z, then R/Z ∼= {|z| = 1} whose characters are t 7→ e2πit.
Then, G : [0, 1)→ C we have

FR/ZG(k) =

∫ 1

0

G(t)e−2πikt dt.

Note that

ck = FR/ZF (k) =

∫ 1

0

F (t)e−2πikt dt = FRf(k).

Then,

F (0) =
∑
n∈Z

cke
2πik·0 =

∑
n∈Z

ck.

So it follows that ∑
n∈Z

f(n) =
∑
k∈Z

FRf(k).

First, we put conditions on F so that the computation for ck is rigorous. It is clear that
we need at least F ∈ L1, so it’s enough that f ∈ L1. We could also impose continuity of
f , but this is unnecessary for this part. Secondly, in order for F to be the the sum of
its Fourier series, we need stronger assumptions. In general, we only have this in the L2

sense. One such condition is that
∑

k∈Z |ck| <∞.
Note that |ck| ≤ ‖F‖0,1 so if F is continuous, then |ck| ≤ C. If F has a continuous

derivative, then
∫ 1

0
F ′(x)e−2 piikx dx = 2πikck, so it would follows that |ck| ≤ C/|2πk|. If

we enforce that F ′, F ′′ continuous on [0, 1], then
∑

k |ck| <∞.
This means that we have

∑
n∈Z ‖f (k)‖[n,n+1] < ∞ for k = 0, 1, 2 for the sums to

converge.

§21.2 The Jacobi Theta Identity

Now, we apply the Poisson Summation formula to f(t) = e−λt
2
.

First, note that
∫∞
−∞ e

−πt2 dt = 1.
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Then,

(FRe
−πλ·2)(ξ) =

∫
R
e−πλt

2

e−2πitξ dt

=

∫
R
e−πλ(t+iξ/λ)2−πξ2/λ dt

= e−πξ
2/λ

∫
R
e−πλ(t+iξ/λ)2 dt

= e−πξ
2/λ lim

T↑∞

∫ T+iξ/λ

−T−iξ/λ
e−πλz

2

dx

= e−πξ
2/λ lim

T→∞
(

∫
[−T+iξ/λ,−T ]

+

∫
[−T,T ]

+

∫
[T,T+iξ/λ]

)e−πλz
2

dz

= e−πξ
2/2

∫
R
e−πλt

2

dt.

Since supT,T+iξ |e−πλz
2| ≤ e−πλ infz∈[T,T+iξ](Rezξ

2) → 0.

It follows that the Fourier transform is exactly e−πξ
2/λ/
√
λ. Since f(t) = e−πλt

2
, it

follows that
Θ(λ) =

∑
n∈Z

e−πλn
2

=
∑
n∈Z

e−πn
2/λ/
√
λ = Θ(1/λ)/

√
λ.
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§22 April 14th, 2021

§22.1 Riemann Zeta Functional Equation

Last time, we showed Θ(t) = Θ(1/t)√
t

, where Θ(t) =
∑

n∈Z e
−πn2t. We will use this to prove

the functional equation for ζ(z). Let ψ(t) =
∑

n≥1 e
−πn2t.

Note that ψ(1/t) =
√
tψ(t)+1/2(

√
t−1). We saw that |ψ(t)| ≤ Ct−1/2 when 0 < t ≤ 1,

and |ψ(t)| ≤ Ce−πt if 1 ≤ t < ∞, so it follows that
∫∞

0
tzpsi(t) dt/t = π−zζ(2z)Γ(z) if

Re(z) > 1/2.
We can write this as

ζ(2z)Γ(z)π−z =

∫ ∞
1

(tz−1 + t−z−1/2)ψ(t) dt+ 1/(2z(2z − 1)).

The proof of this is as follows.

Proof. If Re(z) > 1/2, we have

ζ(2z)π−zΓ(z) =

∫ ∞
0

tz−1ψ(t) dt

=

∫ ∞
1

+

∫ 1

0

tz−1ψ(t) dt

=

∫ ∞
1

(t)−(z−1)ψ(1/t)dt/t2∫ 1

0

tz−1ψ(t) dt =

∫ ∞
1

(1/t)z(ψ(t)
√
t+ 1/2(

√
t)) dt/t

=

∫ ∞
1

t−z−1/2ψ(t) dt+ 1/2

∫ ∞
1

(t−z−1/2 − t−z−1) dt

=

∫ ∞
1

t−z−1/2ψ(t) dt− 1/2(1/(−z + 1/2) + 1/z)

=

∫ ∞
1

(t−z−1/2)ψ(t) dt+
1

2z(2z − 1)

Combining the two integrals gives the result.

This gives us a meromorphic extension of ζ since the exponential decay makes the
integral an entire function. If we put w = 2z, then we have

ζ(w)Γ(w/2)π−w/2 =

∫ ∞
1

(tw/2−1 + t(1−w)/2−1)ψ(t) dt+
1

w(w − 1)
.

Note that the integral is invariant under w 7→ 1− w. This gives the functional equation

π−w/2ζ(w)Γ(w/2) = π−(1−w)/2ζ(1− w)Γ((1− w)/2).

§22.2 Zeros of the Zeta Function

Define ξ(w) = 1/2w(w − 1)π−w/2Γ(w/2)ζ(w), which is an entire function and is so that
ζ(w) = ζ(1 − w). Note that Γ(w/2), π−w/2 have no zeros and are holomorphic when
Re(w) > 0 so the zeros of ξ(w) if Re(w) > 0 are the zeros of ζ(w), since we cannot have
zeros at 0 and 1.
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Recall the Euler product ζ(z) =
∏

n≥1(1− p−zn )−1, which converges when Re(z) > 1

and implies that ζ(z) 6= 0 for Re(z) > 1. Note that ζ(z) = ζ(z), then ρ is a zero iff ρ is a
zero. It follows that ξ(ρ) = 0 gives that ξ(ρ) = ξ(1− ρ) = ξ(1− ρ) = 0.

Note that ζ(p) = 0⇒ 0 ≤ Re(ρ) ≤ 1 and ρ 6= 0, 1. The order of growth of ξ is shown
to be |ζ(z)| ≤ Ce|z|(1+ε) for any ε > 0 and this cannot be improved. By the Hadamard
theorem

ξ(w) = AeBw
∏
n≥1

(1− w/ρn)e−w/ρn ,

and
∑

n |ρn|−2 <∞,
∑

n |ρn|−1 =∞.
It is known that A = −1/2, B = −γ/2 + 1/2 log 4π. Also, since Re(ρ) ∈ [0, 1],

ew/pew/(1−ρ) = ew/(ρ(1−ρ)). So we can also obtain the form −1/2
∏

ρ,Imρ>0(1− w/p)(1 =
w/(1− p)).

The book of Patterson on the Riemann Zeta function discusses more of these details.
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§23 April 19th, 2021

§23.1 Theta Functions

Take Θ(x) =
∑

n∈Z e
−πnsx, x > 0. We can allow x to be a complex number with Rex > 0

since |e−πnsx| = e−πn
2 Rex so the sum is uniformly absolutely convergent on subsets of

{Rex > 0}.
Then, we pass to

f(τ) =
∑
n∈Z

eπin
sτ , Im τ > 0

which is holomorphic on {Im τ > 0}. Then Θ(x) = f(ix) or Θ(−iτ) = f(τ), Im τ > 0.
Note that f(τ + 2) = f(τ) with τ > 0.

Then f(−1/τ) = (−iτ)1/2f(z), where (iτ)1/2 is a branch of the square root where we
remove the negative half-axis. We can choose the branch that is 1 at 1 so that it coincides
with the Jacobi identity from before. Note that these two identities correspond to some
kind of fractional linear transformation.

We have a subgroup of SL(2,R) generated by A =

(
1 2
0 1

)
and B =

(
0 −1
1 0

)
. Note

that the square of the second matrix is −I2. Further, after taking ABA =

(
1 0
−2 1

)
. It

follows that our subgroup contains elements of the form

(
1 2n
0 1

)
,

(
1 0

2n 1

)
,

(
0 −1
1 0

)
.

Note that the subgroup generated by the first two is isomorphic to Z ∗ Z. We can
also view it as a subgroup of SL(2,Z) where the off diagonal entires are congruent
(mod 2). If we multiply such an element by the B we flip the diagonal so that the
main diagonal has even entires. We can show that Γ is a subgroup consisting of the
matrices in SL(2,Z) with diagonal entires even or off diagonal entires even. If we take
ϕ : SL(2,Z) → SL(2,Z/2Z), then |ϕ(Γ)| = 2 and [Sl(2,Z) : Γ] = 3. It is clear that
SL(2,Z/2Z) has 6 elements, since have determinant 1.

Now, we need to deal with the (−iτ)1/2 factor. For a general element in Γ, we have

f(ζ) = ω8(cτ + d)−1/2f

(
aτ + b

cτ + d

)
.

Which 8th root of unity ω8? Complicated...

§23.2 Higher-Variable Thetas

Take a function Θ(z, τ) with domain C×H. We take

Θ(z, τ) =
∑
n∈Z

eπin
2τ+2πinz.

Θ(z, τ) is one of four functions Θa,b(z, τ), namely Θ0,0. We would like something that
is doubly periodic in z with periods (1, τ). This will somehow give the fundamental
solution to the heat equation on R/Z.

We first check that our function is convergent in C×H.

|eπin2τ+2 piinz| = eπn
2(Im τ+2πn(− Im z))

which ensures convergence.

47



Vishal Raman (April 28, 2021) Math 205

Then, note that

Θ(z + 1, τ) =
∑
n∈Z

eπin
2τ+2πin(z+1) =

∑
n∈Z

eπin
2τ+2πinz = Θ(z, τ).

Furthermore,

Θ(z + τ, τ) =
∑
n∈Z

eπin
2τ+2πin(z+τ)

=
∑
n∈Z

eπi(n+1)2τ−πiτ+2πinz

=
∑
n∈Z

eπi(n+1)2τ+2 pii(n+1)z−πiτ−2πi

=
∑
n∈Z

eπin
2τ+2πinz−(πiτ+2πiz)

= Θ(z, τ)e−πiτ−2πiz

This is almost doubly periodic! But recall that we cannot get doubly periodic functions
exactly from the Louiville Theorem. If we take d2

dz2
log θ(z, τ), this will be doubly periodic.

§23.3 Higher Dimensional Holomorphicity

F (z1, . . . , zn), C∞. Then R2n ⊃ Ω → R2 ∼= C, which satisfies the Cauchy-Riemann in
each z1, . . . , zn, namely

∂

∂zk
F = 0, k = 1, . . . , n,

where
∂

∂z
=

1

2
(
∂

∂x
+ i

∂

∂y
).

One can show that if F1, F2 have this property, then F1 · F2 is holomorphic, and if f is a
one-variable holormophic function f(F (z1, . . . , zn)). We also have a local complex Taylor
series expansion ∑

kj≥0,1≤j≤2

ck1,...,knz
k1
1 . . . zknn .

Θ : C×H→ C is a 2-variable holomorphic function.
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§24 April 21st, 2021

§24.1 Higher Dimensional Theta Functions

We constructed a function Θ(z, τ) =
∑

n∈Z e
πin2τ+2πinz with (z, τ) ∈ C × H which had

the properties

Θ(z + 1, τ) = Θ(z, τ),Θ(z + τ, τ) = Θ(z, τ)e−πiτ−2πiz,

which is close to being a doubly periodic function in z. We can actually get a doubly-
periodic, meromorphic function in z via taking ∂2

z log Θ(z, τ).
We have some further properties, for instance,

Θ(z + 1/2, τ + 1) =
∑
n∈Z

eπin
2τ+2πinz+πi(n2+n) = Θ(z, τ).

§24.2 Theta Functions with Characteristics

Take a, b ∈ R. It is useful to consider

Θa,b(z, τ) =
∑
n∈Z

eπi(n+a)2τ+2πi(n+a)(z+b) = eπia
2τ+2πia(z+b)Θ(z + aτ + b, τ).

We will be considering the cases with a, b ∈ {0, 1/2}. We will use the notation Θ2a,2b

for convenience. This gives 4 Jacobi Theta Functions:

Θ00(z, τ) = Θ(z, τ),

Θ01(z, τ) = Θ(z + 1/2, τ),

Θ10(z, τ) = eπiτ/4+πiz
∑
n∈Z

eπi(n
2+n)τ+2πinz

Θ11(z, τ) =
∑
n∈Z

eπi(n
2+n)τ+πiτ/4+2πinz+πiz+πin+iπ/2.

Let p = eπiz, q = eπiτ . This takes z ∈ C→ p ∈ C× and τ ∈ H → 0 < |q| < 1. This gives
the convenient notation

Θ00(z, τ) =
∑
n∈Z

qn
2

p2n = Θ(z, τ),

Θ01(z, τ) =
∑
n∈Z

qn
2

p2n(−1)n,

Θ10(z, τ) = q1/4
∑
n∈Z

p2n+1qn
2+n,

Θ11(z, τ) = i
∑
n∈Z

(−1)np2n+1q(n+1/2)2 .

§24.3 Θab vis the Operators Sb, Ta

Take Sb, Ta, a, b ∈ R which are given by

(Sbf)(z) = f(z + b), (Taf)(z) = f(z + aτ)eπia
2τ+2πiaz.

If f is holomorphic in z ∈ C, these transform holomorphic functions to holomorphic
functions.

We can compute SbTaΘ(z, τ) = Θa,b(z, τ)(left as an exercise).
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§24.4 Zeros of Θ

Note that Θ(z0, τ) = 0 whenever Θ(z0 + kτ + `, τ) = 0 for all k, ` ∈ Z. So the set of zeros
are invariant under shifts by Z + τZ.

Pick, a ∈ C so that Θ(z, τ) 6= 0 on the boundary of the parallelogram given by
a, a+ τ, a+ 1, a+ 1 + τ . We want to count the zeros inside the parallelogram.

Lemma 24.1

Θ(z0, τ) = 0 iff z0 ∈ (Z + 1/2)τ + (Z + 1/2) = (Z + τZ) + τ/2 + 1/2.

Proof. Pick a as above. We show that there is exactly one zero inside the parallelogram.
The number of zeros is given by

1

2πi

∫
∂z log θ(z, τ) dz =

1

2πi

∫ a+1

a

∂z(log θ(z, τ)− log θ(z + τ, τ)) dz

=
1

2πi

∫ a+1

a

2πi dz = 1.

Note that Θ(−z, τ) =
∑

n∈Z e
πin2τ+2πin(−z) = Θ(z, τ). So there is exactly one zero in

the parallelogram, which is then a sinple zero. Then, if Θ(z0, τ) = 0, Θ(−z0, τ) = 0 so
−z0 = z0 + kτ + `, which implies that z0 = k

2
τ + `

2
. This gives 4 possibilities modulo

Z+ τZ, 0, τ/2, 1/2, τ/2 + 1/2. It is easy to verify that only one of these is a zero, namely,
τ/2 + 1/2. We do this as follows:

Θ(aτ + b, τ) = 0⇔ Θa,b(0, τ) = 0.

In our case, we show that Θ1,1(0, τ) = 0. If we show that

Θ1,1(z, τ) = −Θ1,1(−z, τ),

then the result follows.

Θ1,1(−z, τ) =
∑
n∈Z

eπi(n+1/2)2τ+2πi(n+1/2)(−z+1/2)

=
∑
m∈Z

eπi(−m−1/2)2τ+2πi(−m−1/2)(−z−1/2)−2πi(m+1/2)

=
∑
m∈Z

eπi(m+1/2)2+2πi(m+1/2)(z+1/2)(−1)

= −Θ1,1(z, τ).

Corollary 24.2

Θa,b(z, τ) has simple zeros, which are localed at

−2a+ 1

2
τ +
−2b+ 1

2
+ (Z + τZ).

A source with more details is found in Mumford’s lecture at the Tata Institute on Theta
Functions.
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§25 April 26th, 2021

§25.1 Results about the Theta Functions

One can show that

− d2

dz2
log Θ1,1(z) + C =

1

z2
=

∑
(m,n)∈Z2\(0,0)

1

(z − (m+ nτ))2
− 1

(m+ nτ)2
= P(z),

where P is the Weierstrass P-function, which shares the same poles at the lattice
Z + τZ.

We also have the Product formula

Θ(z, τ) =
∏
n≥1

(1− q2n)
∏
m≥1

(1 + q2m−1p2)(1 + q2m−1p−2).

There are many more uses of Theta Functions - there is a rich theory associated with
the subject.

§25.2 Theta Functions and the Heisenberg Group

Recall Sa and Tb with (Sbf)(z) = f(z + b) and (Taf)(z) = f(z + aτ)eiπa
2τ+2πiaz for

f : C→ C. It is easy to check that Ta1+a2 = Ta1Ta2 and Sb1+b2 = Sb1Sb2 . Then, the maps
R 3 a→ Ta, R : b→ Sb are representations of the group (R,+) on F(C) - the vector
space of complex-valued functions.

If we put together Sb and Ta, we see that

Sb(Taf)(z) = (Taf)(z + b) = (f(z + b) + aτ)eiπa
2τ+2πia(z+b)

Ta(Sbf)(z) = (Sbf)(z + aτ)eπia
2τ+2πiaz = f(z + aτ + b)eiπa

2τ+2πiaz.

So it follows that
SbTa = e2πiabTaSb.

Now, consider the Heisenberg group N < M3(R) of matrices with real entries above
the diagonal, and 1 on the diagonal. The Subgroup Γ ⊂ N is the discrete subgroup
with integer entries above the diagonal. To make it easy to see, we write each matrix as
[x, y, z] and the multiplication is given by [x, y, z][x′, y′, z′] = [x+x′, y+y′, z+z′+xy′]. In
particular, [x, y, z] = [0, y, 0][x, 0, 0][0, 0, z]. We can then define a linear map ρ : F(C)→
F(C) given by ρ([a, b, c])f = e2πicTbSaf .

We can check that ρ is a homomorphism, namely ρ([a, b, c])ρ([a′, b′, c′]) = ρ([a, b, c][a′, b′, c′]).
This is left as an exercise.
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§26 April 28th, 2021

§26.1 Heisenberg Group, continued

Recall last time, we defined linear operators on F(C) given by

(Sbf)(z) = f(z + b), (Taf)(z) = f(z + aτ)eπia
2τ+2πiaz.

We used this to define the Heisenberg Group N < M3(R). This had a corresponding
multiplication law

[x, y, z][x′, y′, z′] = [x+ x′, y + y′, z + z′ + xy′].

Using this relation, we have [x, y, z] = [0, y, 0][x, 0, 0][0, 0, z]. It was clear using this that
the discrete subgroup Γ < N with integer entries is indeed a subgroup. We also defined
a representation ρ on N with ρ([a, b, c])f = e2πicTbSaf .

Lemma 26.1

S1Θ(·, τ) = T1Θ(·, τ) = Θ(·, τ).

Proof. Note that Θ(z + 1, τ) = Θ(z, τ) gives S1. Then,

T1Θ(·, τ)(z) = Θ(z + τ)eπiτ+2πiz

=
∑
n∈Z

eπin
2τ+2πin(z+τ)+πiτ+2πiz

=
∑
n∈Z

eπi(n+1)2τ+2πi(n+1)z

=
∑
n∈Z

eπin
2τ+2πinz

= Θ(·, τ)(z).

Corollary 26.2

ρ(Γ)Θ(·, τ) = Θ(·, τ).

This is because ρ(Γ) is generated by ρ[1, 0, 0], ρ[0, 1, 0], ρ[0, 0, 1], which are S1, T1, 1 re-
spectively.

§26.2 Holomorphicity

Let Hol(C) ⊂ F(C) be the subspace of holomorphic functions. Then, ρ([a, b, c])Hol(C) ⊂
H(C).

Fact 26.3. If f ∈ Hol(C), then ρ(Γ)f = f if and only if f ∈ CΘ(·, τ).

Proof. The converse is already done. For the forward direction, if if S1f = f , then
f(z + 1) = f(z) so we have f(z) = h(e2πiz) for h : C \ {0} → C holomorphic. It has a
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Laurent expansion h(w) =
∑
anw

n. Note that both the positive and negative halfs of
the sum have infinite radius of convergence.

Furthermore, we have
f(z + τ)eπiτ+2πiz = f(z),

which implies from the Laurent expansions that∑
n∈Z

ane
2πi(z+τ)n+2πiz+πiτ =

∑
n∈Z

ane
2πinz.

The LHS is ∑
n∈Z

(ane
2πi(n+1/2)τ )e2πi(n+1)z

so it follows that an+1 = ane
2πi(n+1/2)τ by comparing the coefficients of each. It follows

that f is unique up to multiplication by a constant. Therefore, f(z) = cΘ(z, τ).

§26.3 Relation to Quantum Mechanics

There is a subspace H = {f ∈ Hol(C) :
∫
e−2πy2/Im(τ)|f(x+ iy)|2 dxdy <∞}, which is a

Hilbert space that is invariant under ρ([a, b, c]). The Stone-Von Neumann theorem relates
unitary representations on N to the classical operators Sb and Ta which correspond to
position and momentum. Moreover, the representation in holomorphic functions are
important in Quantum Field Theory. The Theta function is not in H, but it is strongly
related.
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