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Convex Optimization
Vishal Raman

We present expository notes on Convex Optimization by Boyd and Van-
denberge. Solutions to some exercises are presented, but many topics are
currently left out. I might fill in some of the applications in the future, but
the main goal of the first reading is to have a fundamental understanding of
the theory, algorithms, and their analysis. Some useful additional references
are notes from EECS 227A/227B from UC Berkeley. Any typos or mistakes
are my own - please redirect them to my email.
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1 Convex Sets

1.1 Affine and Convex Sets

Definition 1.1 (Affine). A set C ⊂ Rn is affine if the line through any two distinct
points in C lies in C; that is, for any x1, x2 ∈ C and θ ∈ R, we have θx1 + (1− θ)x2 ∈ C.

More generally, if we have θ1 + · · ·+ θk = 1, θ1x1 + · · ·+ θkxk is an affine combination
of the points x1, . . . , xk, and an affine set contains every affine combination of its points.
Given an affine set C and a point x0 ∈ C, note that

V = C − x0 = {x− x0 : x ∈ C}
is a linear subspace: closed under sums and scalar multiplication. It follows that the
affine set C can be expressed as C = V + x0, and this subspace does not depend on the
choice of x0. We define dim(C) = dim(V ), the dimension of the corresponding subspace.

Definition 1.2 (Affine Hull). the set of all affine combinations of points in a set C ⊂ Rn

is called the affine hull of C, denoted aff C:

aff C = {θixi : x1, . . . , xk ∈ C,
k∑

i=1

θi = 1.}

Remark 1.3. Note the usage of Einstein summation convention in the definition - I will
probably use this without a remark later in the notes whenever it is clear.

We define the affine dimension of a set C as the dimension of its affine hull. This is a
useful definition in the context of convex analysis, but it is important to note that it is
not always consistent with other definitions of dimension.

Example 1.4 (Affine dimension of S1)

Consider S1 = {x ∈ R2 : x21 + x22 = 1}. Note that dim(aff(S1)) = dim(R2) = 2, while
dim(S1) = 1 under most definitions.

Definition 1.5 (Relative Interior). We define the relative interior of a set C, denoted
relintC as the interior relative to aff C:

relintC = {x ∈ C : B(x, r) ∩ aff C ⊆ C for some r > 0}.
The important thing to note with the relative interior is that the we now consider the

norm assosiated with aff C for C ⊂ Rn, which have affine dimension less than n.

Definition 1.6 (Convex Set). A set C is convex if the line segment between any two
points in C lies in C: for x1, x2 ∈ C, and θ ∈ [0, 1], we have

θx1 + (1− θ)x2 ∈ C.
As before this generalizes to multiple points. We denote convC as the convex hull of

a set C.

Definition 1.7 (Cone). A set C is called a cone, or nonnegative homogeneous, if for
every x ∈ C and θ ≥ 0, we have θx ∈ C. A set C is a convex cone if it is convex and a
cone, which means that for any x1, x2 ∈ C and θ1, θ2 ≥ 0, we have

θ1x1 + θ2x2 ∈ C.
Points of this form have an apex at 0 with edges passing through x1 and x2. We can

similarly define conic combinations and a conic hull.

3



Vishal Raman (May 10, 2023) Optimization

1.2 Important Examples

We start with simple examples:

� The empty set, a singleton, and the whole space are affine.

� Any line if affine. If it passes through zero, it is a subspace, and hence a convex
cone.

� A line segment is convex but not affine (unless it reduces to a point).

� A ray, which has the form {x0 + θv|θ ≥ 0} with v ̸= 0 is convex but not affine. It
is a convex cone if x0 = 0.

� Any subspace is affine and a convex cone, hence convex.

Definition 1.8 (Hyperplane). A hyperplane is a set of the form {x|a⊺x = b}, where
a ∈ Rn \ 0, b ∈ R.

Geometrically, we can interpret this as the set of points witha constant inner product
to a given vector a, or as a hyplerplane with normal vector a and offset from the origin b.

Definition 1.9 (Positive Semidefinite Cone). We use the notation Sn to denote the set
of symmetric n× n matrices, a vectorspace with dimension n(n+ 1)/2. Then, we have

Sn
+ = {X ∈ Sn : X ≽ 0},

Sn
++ = {X ∈ Sn : X ≻ 0}

,the set of of symmetric positive semidefinite and symmetric positive definite matrices
respectively. The set Sn

+ is a convex cone.

1.3 Generalized Inequalities

Definition 1.10 (Proper Cone). A cone K ⊂ Rn is called proper if it satisfies the
following properties:

� K is convex.

� K is closed.

� K is solid, which means that it has nonempty interior.

� K is pointed, which means that it contains no line (or equivalently, x ∈ K,−x ∈
K ⇒ x = 0).

Definition 1.11 (Generalized Inequality). We associate a partial ordering on Rn on a
proper cone K, which is called a generalized inequality. This is defined by

x ⪯K y ⇐⇒ y − x ∈ K.

This is associated with a strict partial ordering given by

x ≺K y ⇐⇒ y − x ∈ K◦.

The generalized inequality satisfies the following properties:
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� Preserved under addition: if x ⪯K y, u ⪯K v, then x+ u ⪯K y + v.

� Transitive.

� Preserved under non-negative scaling.

� Reflexive.

� Antisymmetric.

� Preserved under limits: if xi ⪯K yi and xi → x, yi → y, then x ⪯K y.

The strict version satisfies fewer properties:

� x ≺K y ⇒ x ⪯K y

� x ≺K y and u ⪯K v, then x+ u ⪯K y + v

� x ≺K y and α > 0, then αx ≺K αy

� x ̸≺K x

� if x ≺K y, then for u and v small enough(wrt the norm), x+ u ≺K y + v.

The notion of minimum and maximum elements are more complicated in the context
of generalized inequalities:

Definition 1.12 (Minimum Element). x ∈ S is the minimum element of S if for every
y ∈ S, x ⪯K y. Alternatively, x ∈ S is the minimum element if and only if

S ⊆ x+K.

Definition 1.13 (Minimal Element). x ∈ S is a minimal element of S if y ⪯ x only if
y = x. Alternatively, x ∈ S is minimal if and only if

(x−K) ∩ S = {x}.

Remark 1.14. We can define maximum and maximal analogously. A set can have at
most one minimum/maximum element. However, it can have many minimal or maximal
elements.

1.4 Supporting and Separating Hyperplanes

We begin with the statement of the separating hyperplane theorem:

Theorem 1.15 (Separating Hyperplane Theorem)

Suppose C and D are nonempty disjoint convex sets, C ∩D = ∅. Then there exists
a ̸= 0 and b such that a⊺x ≤ b for all x ∈ C and a⊺x ≥ b for all x ∈ D. In other
words, the affine function a⊺x− b is nonpositive on C and nonnegative on D. The
hyperplane {x : a⊺x = b} is called a separating hyperplane for the sets C and D.
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Proof. We begin by proving a special case and leave the general case for a future exercise.
Define dist(C,D) = inf{∥u− v∥2|u ∈ C, v ∈ D}. We assume dist(C,D) > 0 and there

exist points c ∈ C, d ∈ D achieving the minimum distance (this is satisfied when C,D
are closed as one set is bounded).

Define a = d − c, b = ∥d∥22−∥c∥22
2

. We can show that the function f(x) = a⊺x − c =
(d− c)⊺(x− (1/2)(d+ c)) is nonpositive on C and nonnegative on D.

It suffices to show that f is nonnegative on D (we can swap C and D and consider
−f for the other case). Suppose there was a point u ∈ D such that f(u) < 0. We can
express f(u) as

f(u) = (d− c)⊺(u− d) + (1/2)∥d− c∥22,
which implies that (d− c)⊺(u− d) < 0 . Now, note that

d

dt
∥d+ t(u− d)− c∥22

∣∣∣∣
t=0

= 2(d− c)⊺(u− d) < 0.

It follows that there exists some t > 0 with t ≤ 1 such that

∥d+ t(u− d)− c∥2 < ∥d− c∥2,

so the point d0 = d+ t(u− d) is closer to c than d. However, d+ t(u− d) ∈ D as a point
on the line segment between d and u, which contradicts the fact that d ∈ D is the closest
point to C.

Remark 1.16. Note that we may not have strict separation of the sets C and D, even if
the sets are closed.

If we impose a stronger condition, we also have a converse.

Theorem 1.17 (Converse Separating Hyperplane Theorem)

Any two convex sets C and D, at least one of which is open, are disjoint if and only
if there exists a separating hyperplane.

Definition 1.18 (Supporting Hyperplane). Suppose C ⊂ Rn and x0 ∈ ∂C, the topo-
logical boundary. If a ̸= 0 satisfies a⊺x ≤ a⊺x0 for all x ∈ C, then the hyperplane
{x : a⊺x = a⊺x0} is called a supporting hyperplane to C at the point x0. Equivalently, we
have that the point x0 and the set C are separated by the hyperplane {x : a⊺x = a⊺x0}.
Geometrically, we have that the hyperplane {x : a⊺x, a⊺x0} is tangent to C at x0 and

the halfspace {x : a⊺x ≤ a⊺x0} contains C.

Theorem 1.19 (Supporting Hyperplane Theorem)

For any nonempty convex set C and x0 ∈ ∂C, there exists a supporting hyplerplane
to C at x0.

This follows directly from applying the separating hyperplane theorem. There also exists
a partial converse that we will show in a future exercise.

Theorem 1.20 (Partial converse of Supporting Hyperplane Theorem)

If a set is closed, has nonempty interior, and has a supporting hyperplane at every
point in its boundary, then it is convex.
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1.5 Dual Cones

Definition 1.21 (Dual Cone). Let K be a cone. The set

K∗ = {y : x⊺y ≥ 0∀x ∈ K}

is called the dual cone of K. It is easy to show that K∗ is always a cone. Moreover, K∗

is always convex, even if the original one is not.

Example 1.22 (Dual Cone of a Subspace)

The dual cone of a subspace V ⊆ Rn is the orthogonal complement V ⊥ = {y : v⊺y =
0∀v ∈ V }.

Example 1.23 (Nonnegative Orthant)

The cone Rn
+ is its own dual:

x⊺y ≥ 0∀x ⪰ 0⇔ y ⪰ 0.

We call such a cone self-dual.

Example 1.24 (Positive semidefinite cone)

Note that on Sn, we use the standard inner product tr(XY ) =
∑n

i,j=1XijYij. We
claim that the positive semidefinite cone Sn

+ is self-dual.

Proof. Suppose Y ̸∈ Sn
+. Then, there exists q ∈ Rn such that

q⊺Y q = tr(qq⊺Y ) < 0.

It follows that Y ̸∈ (Sn
+)

∗ since tr(XY ) < 0 where X = qq⊺.
Conversely, suppose X, Y ∈ Sn

+. Recall the eigenvalue decomposition: X =∑n
i=1 λiqiq

⊺
i . Hence, we have

tr(XY ) = tr

(
Y

n∑
i=1

λiqiq
⊺
i

)
=

n∑
i=1

λiq
⊺
i Y qi ≥ 0.

Dual cones satisfy the following properties:

� K∗ is closed and convex.

� K1 ⊆ K2 implies K∗
2 ⊆ K∗

1 .

� If K has nonempty interior, then K∗ is pointed(contains no line)

� If the closure of K is pointed, then K∗ has nonempty interior.

� K∗∗ is the closure of the convex hull of K.

These properties show that if K is a proper cone(closed, convex, nonempty interior,
pointed), then so is its dual K∗ and K∗∗ = K.
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1.5.1 Dual generalized inequalities

Suppose K∗ is proper so that it induces a generalized inequality ⪯K . Then K
∗ is proper,

and induces its own generalized inequality.

� x ⪯ y if and only if λ⊺x ≤ λ⊺y for all λ ⪰K∗ 0.

� x ≺ y if and only if λ⊺x < λ⊺y for all λ ⪰K∗ 0, λ ̸= 0.

We can use these to also establish dual characterizations of minimum/minimal ele-
ments.

Proposition 1.25

x ∈ S is the minimum element of S with respect to ⪯K if and only if for all λ ≻K∗ 0,
x is the unique minimizer of λ⊺z over z ∈ S. Geometrically, this means that for all
λ ≻K∗ 0, the hyperplane

{z : λ⊺(z − x) = 0}

is a strict supporting hyperplane to S at x.

Remark 1.26. Note that we did not make any assumptions about the convexity of S -
this is not required.

Proposition 1.27

If λ ≻K∗ 0 and x ∈ S minimizes λ⊺z over z ∈ S, then x is minimal over S.

Proposition 1.28

If x ∈ S is minimal and S is convex, then there exists a nonzero λ ⪰K∗ 0 such that
x minimizes λ⊺z over z ∈ S.
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1.6 Solutions to selected exercises

Exercise 1.29 (2.3). A set C is midpoint convex if a, b ∈ C implies that (a+ b)/2 ∈ C.
Show that if C is closed and midpoint convex, then C is convex.

Proof. Take t ∈ [0, 1] and x, y ∈ C. It suffices to show that z = tx + (1 − t)y ∈ C.
This essentially follows from binary search on z - we can find a sequence of midpoints
{zn} → z and z ∈ C by the definition of closedness.

Exercise 1.30 (2.4). Show that the convC =
⋂
{S ⊃ C : S is convex}.

Proof. It is clear that convC ⊃
⋂
{S ⊃ C : S is convex} since convC is convex. More-

over, if x ∈ convC, then x = θix
i a convex combination of elements in C ⊂ S, so x ∈ S

for all convex S ⊃ C.

Exercise 1.31 (2.10). Show that the solution set of a quadratic inequality:

C = {x ∈ Rn : x⊺Ax+ b⊺x+ c ≤ 0}

with A ∈ Sn, b ∈ Rn, c ∈ R is convex is A ⪰ 0. Moreover, show that the intersection of
C and the hyperplane defined by g⊺x+ h = 0 (where g ≠ 0) is convex if A+ λgg⊺ ⪰ 0
for some λ ∈ R. Is the converse of any of these statements true?

Proof. Suppose A ⪰ 0. If x, y ∈ C, and t ∈ [0, 1] and we define z = tx + (1 − t)y, it
follows that

z⊺Az + b⊺z + c = (tx+ (1− t)y)⊺A(tx+ (1− t)y) + b⊺(tx+ (1− t)y) + c

= t(tx⊺Ax+ b⊺x+ c) + (1− t)((1− t)y⊺Ay + b⊺y + c) + 2t(1− t)x⊺Ay
≤ 2t(1− t)x⊺Ay − t(1− t)x⊺Ax− t(1− t)y⊺Ay
= −t(1− t)(x+ y)⊺A(x+ y) ≤ 0.

The converse is not true - consider A = −1, b = 0 and c = 0. Then, C = R which is
convex while A ̸⪰ 0.
Another proof is as follows: the intersection of C with the hyperplane is given by

{x ∈ Rn : x⊺Ax+ b⊺x+ c ≤ 0}.

Recall that a set C is convex if the intersection with any arbitrary line is convex. Let
L = {x+ tv : t ∈ R} for some fixed v ∈ Rn. Then, note that

(x+ tv)⊺A(x+ tv) + b⊺(x+ tv) + c = αt2 + βt+ γ,

where α = v⊺Av, β = b⊺v + 2x⊺Av, γ = c+ b⊺x+ x⊺Ax. It follows that

C ∩ L = {x+ tv : αt2 + βt+ γ ≤ 0}.

Note that a sufficient condition for convexity is α ≥ 0 which happens when v⊺Av ≥ 0 or
A ⪰ 0.
For the second problem, we have the added condition that g⊺x+ h = 0. We can define

δ = g⊺v and ϵ = g⊺x+h, taking the intersection of the hyperplane with the line. Without
loss of generality, we may assume that ϵ = 0. Then, we have the intersection

{x+ tv : αt2 + βt+ γ ≤ 0, δt = 0}.

9
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It δ ̸= 0, then the intersection is the singleton set {x}. Otherwise, δ = g⊺v = 0, and the
set reduces to

{x+ tv : αt2 + βt+ γ ≤ 0}.

As before, a sufficient condition for the convexity is α > 0. Therefore, the set is convex if
g⊺v implies that v⊺Av ≥ 0. If there exists λ such that A+ λgg⊺v ⪰ 0, then we have

v⊺Av = v⊺(A+ λgg⊺)v ≥ 0,

which proves the result.

Remark 1.32. Checking the intersection with all lines is a useful trick that is also helpful
in the case of proving (or numerically checking) convexity of functions.

Exercise 1.33 (2.11). Show that the hyperbolic set H2 = {x ∈ R2
+ : x1x2 ≥ 1} is convex.

Show the same result for Hn.

Proof. Suppose a, b ∈ Hn. We wish to show that for t ∈ [0, 1] c = ta + (1 − t)b ∈ Hn.
Note that

n∏
i=1

ci =
n∏

i=1

(tai + (1− t)bi)

≥
n∏

i=1

atib
1−t
i

= (
n∏

i=1

ai)
t(

n∏
i=1

bi)
1−t

≥ 1.

Exercise 1.34 (2.20). Finding a strictly positive solution of linear equations.

Proof. We first prove the hint. If there exists λ such that c = A⊺λ and d = b⊺λ, then if
Ax = b,

c⊺x = λ⊺Ax = λ⊺b = d⊺ = d.

Conversely, suppose that c⊺x = d for all x satisfying Ax = b - in other words Ax = b
implies that c⊺x = d.
If rank(A) = r < n, then we can find F ∈ Rn×(n−r) with R(F ) = N(A) so that any x

satisfying Ax = b is of the form x = Fy + x0 for all y ∈ Rn−r. Note that we have

c⊺(Fy + x0) = c⊺Fy + c⊺x0 = d.

This is only possible for all y if c ∈ N(F ⊺) = R(A⊺), which proves that c = A⊺λ for some
λ. It follows that d = λ⊺Ax = λ⊺b, which proves the result.
Suppose there exists λ so that A⊺λ ⪰ 0, A⊺λ ̸= 0 and b⊺λ ≤ 0. Then, by the hint, we

have that c⊺x = d for all x satisfying Ax = b where d = b⊺λ and c = A⊺λ. It follows
that x ̸≻ 0 since c⊺x = d ≤ 0. Conversely, if there exists x ≻ 0 with Ax = b, then if
there existed λ with c := A⊺λ ⪰ 0, c ̸= 0 and d := b⊺λ ≤ 0, then we have c⊺x0 = d for
all x satisfying Ax0 = b. This is a contradiction as before since if we have x ≻ 0, then
c⊺x = d ≻ 0, a contradiction.
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Exercise 1.35 (2.21). Suppose C and D are disjoint subsets of Rn. Consider the set of
(a, b) ∈ Rn+1 for which a⊺x ≤ b for all x ∈ C and a⊺x ≥ b for all x ∈ D. Show that this
set is a convex cone.

Proof. Let S denote the set of separating hyperplanes. First, it is clear that if (a, b) ∈ S,
then k(a, b) ∈ S for all k ≥ 0. If (a, b), (c, d) ∈ S, t1, t2 ≥ 0, then

(t1a+ t2c)
⊺x ≤ t1b+ t2d, x ∈ C

(t1a+ t2c)
⊺x ≥ t1b+ t2d, x ∈ C

Exercise 1.36 (2.22). Completing the proof of the separating hyperplane theorem.

Suppose C,D are disjoint convex sets and consider S = C−D = {x−y|x ∈ C, y ∈ D},
which is convex and does not contain the origin.
Suppose 0 ̸∈ S. Then, we can apply the special case of the separation theorem to

obtain a with a⊺(x − y) > 0 for x ∈ C, y ∈ D. In particular, a⊺x > a⊺y for all x ∈ C,
y ∈ D, so we can take b = supy∈D a

⊺y so that a⊺x ≥ b for all x ∈ C and a⊺y ≤ b for all
y ∈ D.
Now, suppose 0 ∈ S. Suppose (S)◦ = ∅. Then, S must be contained in a hyperplane

H = {x : a⊺x = 0} that contains 0. But this implies the result since for all x ∈ C, y ∈ D,
we have a⊺(x− y) = 0, or a⊺x = a⊺y, a trivial separating hyperplane.
Otherwise, (S)◦ ̸= ∅. For all λ > 0, define the set Sλ = {x ∈ S : dist(x, ∂S) > λ}.

Since S has nonempty interior, there exists some ϵ > 0 so that for all 0 < λ < ϵ, Sλ ≠ ∅.
Moreover, note that Sλ is closed and disjoint from the origin. Let λi → 0 be a decreasing
sequence with λ1 < ϵ. By the special case of the separating hyperplane theorem, we can
find ai ̸= 0 such that a⊺i x > 0 for x ∈ Sλi

and without loss of generality, we can assume
that ∥ai∥2 = 1 through normalization. However, note that {ai} ⊂ {x : ∥x∥2 ≤ 1}, which
is compact, so it follows that it has a convergent subsequence to a point a, which must
satisfy

a⊺(x− y) ≥ 0, x− y ∈ S.

Exercise 1.37 (2.24). Compute the supporting hyperplanes for H2.

Proof. For each t > 0, we can compute the supporting hyperplane for H2 at (t, 1/t) - the
tangent line has slope − 1

t2
, which gives the corresponding line

y − 1
t

t− x
=

1

t2
,

which can be simplified to
x+ t2y = 2t.

Hence, we can express H2 as

H2 =
⋂
t>0

{(x, y) ∈ R2 : x+ t2y ≥ 2t}.

Exercise 1.38 (2.26). The support function of C ⊂ Rn is defined by

SC(y) = sup
x∈C

y⊺x,

where SC can take the value +∞. Suppose C,D are closed convex sets. Show that
C = D if and only if their support functions are equal.

11
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Proof. The forward direction is obvious. For the reverse, suppose SC(y) = SD(y) for all
y ∈ Rn. Suppose there is a point x ∈ C \D (the case with D \C is the same). It follows
that x0 is strictly separated from D so there exists (a, b) with a ̸= 0 so that a⊺x < b for
x ∈ D, a⊺x0 > b. But this implies that SC(a) ≥ b, while SD(a) < b, a contradiction.

Exercise 1.39 (2.27). Converse supporting hyperplane theorem: suppose C is closed,
solid, and has a supporting hyperplane at every point in its boundary. Show that C is
convex.

Proof. We prove this by showing that the intersection of all all spaces defined by sup-
porting hyperplanes of C is exactly C. It is clear that the intersection contains C since
each supporting hyperplane contains C.
To show the other direction, we show that if a point p ̸∈ C, then it is not in the

intersection of all the half spaces defined by the supporting hyperplanes. Suppose without
loss of generality that 0 ∈ C◦. There exists some t ∈ (0, 1) so that tp ∈ ∂C. Let
a⊺(x− tp) = 0 be the supporting hyperplane at tp. Note that since 0 ∈ C◦, we have that
a⊺(−tp) < 0 so a⊺p > 0. This implies the result since

a⊺(p− tp) = (1− t)a⊺p > 0,

so p is not contained in the corresponding half space.

12
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2 Convex Functions

2.1 Definition and Basic Properties

Definition 2.1. A function f : Rn → R is convex if dom f is convex and if for all
x, y ∈ dom f and θ ∈ [0, 1], we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

f is strictly convex if the inequality is strict for x ̸= y.

Geometrically, this means that the line segment between (x, f(x)) and (y, f(y)) is
above the graph of f .
One of the most useful ways to characterize convexity of a function is through line-

restriction.

Theorem 2.2 (Line-Restriction)

A function f is convex if and only if for all x ∈ dom f and all v, the function
g(t) = f(x+ tv) is convex (on its domain).

Proposition 2.3 (First-order condition)

Suppose f is differentiable. Then f is convex if and only if dom f is convex and

f(y) ≥ f(x) +∇f(x)⊺(y − x)

for all x, y ∈ dom f . Similarly, f is strictly convex if and only if the inequality is
strict for x ̸= y.

Remark 2.4. This corresponds to the first-order Taylor approximation of f near x and
the result says that this is a global underestimator for a convex function.

Proof. First, consider n = 1. Assume f is convex and take x, y ∈ dom f . Since dom f is
convex, for t ∈ [0, 1], x+ t(y − x) ∈ dom f , so by the convexity of f ,

f(x+ t(y − x)) ≤ (1− t)f(x) + tf(y).

Equivalently, we have

f(y) ≥ f(x) +
f(x+ t(y − x))− f(x)

t
= f(x) + f ′(x)(y − x) + o(t).

Taking the limit as t→ 0 gives the result. For the converse, choose x ̸= y, θ ∈ [0, 1] and
let z = θx+ (1− θ)y. We have

f(x) ≥ f(z) + f ′(z)(x− z), f(y) ≥ f(z) + f ′(z)(y − z).

Then, we have
θf(x) + (1− θ)f(y) ≥ f(z),

which proves the result.

13
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To prove the general case, consider x, y ∈ Rn and define g(t) = f(ty + (1 − t)x), so
that g′(t) = ∇f(ty + (1− t)x)⊺(y− x). If f is convex, g is convex, so g(1) ≥ g(0) + g′(0),
which proves the result. If the inequality holds for all x, y, then ty + (1− t)x ∈ dom f ,
and t̂y + (1− t̂)x ∈ dom f , so

g(t) ≥ g(t̂) + g′(t̂)(t− t̂),

which implies that g is convex.

Theorem 2.5 (Second-order condition)

Suppose f is twice differentiable. Then f is convex if and only if dom f is convex
and its Hessian is positive semidefinite: for all x ∈ dom f ,

∇2f(x) ⪰ 0.

Some common examples:

� Exponential: eax is convex on R for all a ∈ R.

� Powers: xa is convex on R++ when a ≥ 1 or a ≤ 0, and concave for a ∈ [0, 1].

� Powers of absolute value: |x|p for p ≥ 1 is convex on R.

� Logarithm: log x is concave on R++.

� Negative entropy: x log x is convex on R++.

� Norms: every norm on Rn is convex.

� Max function: f(x) = max{x1, . . . , xn} is convex on Rn.

� Quadratic-over-linear: f(x, y) = x2/y over R× R++.

� Log-sum-exp: f(x) = log(ex1 + · · ·+ exn) is convex on Rn.

� Geometric mean: f(x) = (
∏n

i=1 xi)
1/n

is concave on Rn
++.

� Log-determinant: f(X) = log detX is concave on Sn
++.

Definition 2.6 (α-sub/superlevel sets). The α-sublevel set of a function f : Rn → R is
defined as

Cα = {x ∈ dom f : f(x) ≤ α}.
The α-superlevel set given by

Cα = {x ∈ dom f : f(x) ≥ α}

Sublevel sets of a convex function are convex for any value of α. The converse is not true:
consider f(x) = −ex. Similarly, if f is concave, then Cα is convex for any value of α.

Definition 2.7 (Epigraph). The epigraph of a function f : Rn → R is defined as

epi f = {(x, t) : x ∈ dom f, f(x) ≤ t}.

Definition 2.8 (Hypograph). The epigraph of a function f : Rn → R is defined as

hypo f = {(x, t) : x ∈ dom f, f(x) ≥ t}.

The last very useful result is Jensen’s inequality:

14
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Theorem 2.9 (Jensen’s Inequality)

If f is convex, x1, . . . , xk ∈ dom f , and θ1, . . . , θk ≥ 0 with θ1 + · · ·+ θk = 1, then

f(θix
i) ≤ θif(x

i).

2.2 Convexity-preserving Operations

We have the following examples:

� Conic combination: If fi are convex functions, and wi ≥ 0, then wif
i is convex.

� Nonnegative integrals: If f(x, y) is convex in x for each y ∈ A, and w(y) ≥ 0 for
each y ∈ A, then

g(x) =

∫
A
w(y)f(x, y) dy

is convex.

� Composition with affine mapping: If f is convex, then g(x) = f(Ax+ b) is convex.

� Composite theorem: If f : D1 → R is convex, and g : D2 → R is non-decreasing,
with range(f) ⊂ D2, then g ◦ f is convex.

� Pointwise supremum: if for each y ∈ A, f(x, y) is convex in x, then the function g,
defined as

g(x) = sup
y∈A

f(x, y)

is convex in x. This follows immediately from the epigraph characterization of
convexity.

There is also a converse to the last result: almost every convex function can be
expressed as the pointwise supremum of a family of affine functions.

Theorem 2.10

If f is a lower semicontinuous convex function, then for all x ∈ Rn,

f(x) = sup{g(x)|g affine, g ≤ f}.

We also have the following result relating to minimization:

Theorem 2.11

If f is convex in (x, y) and C is a convex nonempty set, then the function

g(x) = inf
y∈C

f(x, y)

is convex.

15



Vishal Raman (May 10, 2023) Optimization

2.3 The conjugate function

Definition 2.12 (Conjugate). Let f : Rn → R. The conjugate function f ∗ : Rn → R is
defined by

f ∗(y) = sup
x∈dom f

(y⊺x− f(x)).

The domain of the conjugate function is y ∈ Rn so that the supremum is finite.

As an immediate corollary of the definition, we obtain the following results.

Theorem 2.13 (Fenchel’s Inequality)

For all x, y, we have
f(x) + f ∗(y) ≥ x⊺y.

This is sometimes called Young’s inequality when f is differentiable.

Theorem 2.14

If f is convex and epi f is closed, then f ∗∗ = f . In general, f ∗∗ ≤ f .

Example 2.15 (Legendre Transform)

The conjugate of a differentiable function f is also called the Legendre transform.
Suppose f is convex and differentiable, with dom f = Rn. Any maximizer x∗ of
y⊺x − f(x) satisfies y = ∇f(x∗). Conversely, if x∗ satisfies y = ∇f(x∗), then x∗

maximizes y⊺x− f(x). Therefore, if y = ∇f(x∗), we have

f ∗(y) = (x∗)⊺∇f(x∗)− f(x∗).

Thus, we can determine f ∗(y) for any y for which we can solve y = ∇f(z) for z.
Alternatively, let z ∈ Rn be arbitrary and define y = ∇f(z). Then,

f ∗(y) = z⊺∇f(z)− f(z).

2.4 Quasiconvexity

Definition 2.16 (Quasiconvex Function). A function f : Rn → R is quasiconvex if its
domain and all sublevel sets Cα for α ∈ R are convex.

Theorem 2.17 (Jensen’s Characterization)

A function f is quasiconvex if and only if dom f is convex and for any x, y ∈ dom f
and θ ∈ [0, 1]

f(θx+ (1− θ)y) ≤ max{f(x), f(y)}.

In R we have a simple characterization of quasiconvex functions: Namely, a continuous
function f : R→ R is quasiconvex if and only if at least one of the conditions holds:

� f is nondecreasing,
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� f is nonincreasing,

� there is a point c ∈ dom f such that for t ≤ c, f is nonincreasing, and for t ≥ c, f
is nondecreasing.

The point c can be chosen as a global minimizer of f .

Theorem 2.18 (First-order conditions)

Suppose f : Rn → R is differentiable. Then f is quasiconvex if and only if dom f is
convex and for all x, y ∈ dom f ,

f(y) ≤ f(x) =⇒ ∇f(x)⊺(y − x) ≤ 0.

Geometrically, when ∇f(x) ̸= 0, this says that ∇f(x) defines a supporting hyperplane
to the sublevel set {y|f(y) ≤ f(x)}.

Remark 2.19. It is important to note the differences between the first-order conditions
for convexity and quasiconvexity. Notably, if f is convex and ∇f(x) = 0, then x is a global
minimizer of f . This is false for quasiconvex functions.

Theorem 2.20 (Second-order conditions)

Suppose f is twice differentiable. If f is quasiconvex, then for all x ∈ dom f , and all
y ∈ Rn, we have

y⊺∇f(x) = 0 =⇒ y⊺∇2f(x)y ≥ 0.

As a partial converse, if f satisfies

y⊺∇f(x) = 0 =⇒ y⊺∇2f(x)y > 0

for all x ∈ dom f and all y ∈ Rn, y ̸= 0, then f is quasiconvex.

The condition is more complex to interpret. It says that when ∇f(x) = 0, then
∇2f(x) ⪰ 0. When ∇f(x) ̸= 0, it means that ∇2f(x) is positive semidefinite on the
space ∇f(x)⊥ - this means that ∇2f(x) can have at most one negative eigenvalue. The
converse says that ∇2f(x) is positive definite whenever ∇f(x) = 0 and for all other
points, ∇2f(x) is positive definite on ∇f(x)⊥.
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2.5 Solutions to selected problems

Exercise 2.21 (3.4). Show that a continuous function f : Rn → R is convex if and only
if for every line segment, its average value on the segment is less than or equal to the
average of its values at the endpoints of the segment: for every x, y ∈ Rn,∫ 1

0

f(x+ λ(y − x)) dy ≤ f(x) + f(y)

2
.

Proof. If f is convex, then f(x+ t(y − x)) ≤ (1− t)f(x) + tf(y), so it follows that∫ 1

0

f(x+ λ(y − x)) dλ ≤
∫ 1

0

(1− λ)f(x) + λf(y) dy =
f(x) + f(y)

2
.

Exercise 2.22 (3.5). Suppose f : R → R is convex with R+ ⊂ dom f . Show that its
running average F , defined as

F (x) =
1

x

∫ x

0

f(x) dt, domF = R++.

Proof. Note that we can rewrite

F (x) =

∫ 1

0

f(sx) ds

which proves the result.

Exercise 2.23 (3.7). Show that a bounded convex function on Rn is constant.

Proof. We first show the result for n = 1. Suppose f < M . If we have f(x) ̸= f(y), then
if we take the line through f(x) and f(y), this must lie below f for all z ̸∈ [x, y]. But
this is impossible as the line intersects the vertical line y =M .
To generalize the result, note that if f is convex and bounded, then gv(t) = f(x+ tv)

is convex and bounded for any v, which implies that gv is constant. But this follows for
all v ∈ Rn which proves the result.

Exercise 2.24 (3.8). Prove the second-order convexity condition.

Proof. We first prove the case for n = 1. Note that by the second-order Taylor expansion

f ′′(x) =
2

h2
(
f(x+ h)− f(x)− f ′(x)h+ o(h2)

)
By the first order characterization f(x+ h)− f(x)− f ′(x)h ≥ 0, which implies that

f ′′(x) ≥ o(1)
h→0−−→ 0.

Conversely, by the mean-value theorem version of Taylor’s theorem, we have

f(y) = f(x) + f ′(x)(y − x) + 1

2
f ′′(z)(y − x)2, z ∈ [x, y],

which implies the result.
To generalize, define g(t) = f(x+ tv) for some v. If f is convex, then g is. Conversely,

it suffices to show that
g′′(t) = v⊺∇2f(x+ tv)v ≥ 0.

But this follows directly from the definition of positive-semidefiniteness.
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Exercise 2.25 (3.9). Let F ∈ Rn×m, x̂ ∈ Rn. The restriction of f to {Fz + x̂ : z ∈ Rm}
is defined as the function f̃ : Rm → R with

f̃(z) = f(Fz + x̂), dom f = {z : Fz + x̂ ∈ dom f}.

Suppose f is twice differentiable and convex. Suppose A ∈ Rp×n is a matrix whose
nullspace is equal to the range of F and rankA = n− rankF . Show that f̃ is convex if
for all z ∈ dom f̃ there exists a λ ∈ R such that

∇2f(Fz + x̂) + λA⊺A ⪰ 0.

Proof. The convexity follows from the hint that B ∈ Sn and A ∈ Rp×n, then x⊺Bx ≥ 0
for all x ∈ N(A) if there exists λ such that B + λA⊺A ⪰ 0. So we prove the hint. But
this is obvious because

0 ≤ x⊺(B + λA⊺A)x = x⊺Bx+ λxA⊺Ax = x⊺Bx,

since x ∈ N(A).

Exercise 2.26 (3.11). A function ψ : Rn → R is called a monotone mapping if for all
x, y ∈ domψ,

(ψ(x)− ψ(y))⊺(x− y) ≥ 0.

Suppose f : Rn → R is differentiable and convex. Show that ∇f is monotone. Is this
converse true?

Proof. This follows from the first order characterization:

f(y) ≥ f(x) +∇f(x)⊺(y − x),

f(x) ≥ f(y) +∇f(y)⊺(x− y),

and adding the two gives the result.
The converse is false - essentially follows from the fact that not all vector fields

conservative. It is easy to find monotone vector fields that are not conservative - take
ψ(x, y) = (x+ y, y).

Exercise 2.27 (3.12). Suppose f : Rn → R is convex, g : Rn → R is concave, dom f =
dom g = Rn and g ≤ f . Show that there exists an affine function h such that g ≤ h ≤ f .

Proof. A nice geometric argument: (epi f)◦ and (hypo g)◦ are both nonempty, disjoint
convex sets. By the separating hyperplane theorem, there exists a separating hyperplane
between the two sets, which defines the affine function between f and g.

Exercise 2.28 (3.14). Convex-concave functions and saddle-points A function f :
Rn ×Rm → R is convex-concave if f(x, z) is a concave function of z for each fixed x and
a convex function of x for each fixed z. We also require the domain to have the product
form dom f = A×B, where A,B are convex.

� Give a second-order condition for f ∈ C2 to be convex-concave in terms of its
Hessian.

Proof. We require ∇2
xxf ⪰ 0 and ∇2

zzf ⪯ 0.
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� Suppose f is convex-concave and differentiable with ∇f(x0, z0) = 0. Show the
saddle-point property holds: for all x, z,

f(x0, z) ≤ f(x0, z0) ≤ f(x, z0).

Show that this implies the strong max-min property:

sup
z

inf
x
f(x, z) = inf

x
sup
z
f(x, z).

Proof. By the first order characterization: f(x, z0) ≥ f(x0, z0) and f(x0, z) ≤
f(x0, z0) which proves the result. This implies the strong max-min property
because we can independently maximize in z and minimize in x regardless of
order.

� Suppose f is differentiable and the saddle-point property holds at x0, y0. Show that
∇f(x0, z0) = 0.

Proof. Note that if f(x0, z0) ≤ f(x, z0) for all x, then ∇xf(x0, z0) = 0 since x0
is a global minimizer of f(·, z0). We can argue the same way for z to obtain the
result.

Exercise 2.29 (3.28). Let f : D → R be a convex function with dom f = D ̸= Rn.
Define f̃ : D → R to be the pointwise supremum of all affine functions that are global
underestimators of f :

f̃ = sup{g : g affine, g ≤ f}.

Show that f(x) = f̃(x) for all x ∈ D◦. Furthermore, show that if f is closed(epi f is
closed), then f = f̃ .

Proof. We first show that f(x) = f̃(x) for all x ∈ D◦. Note that the point (x, f(x)) ∈ ∂D.
There is a supporting hyperplane to epi f at (x, f(x)) - there exists a ∈ Rn, b ∈ R so that
a ̸= 0, b ≥ 0 and

a⊺y + bt ≤ a⊺x+ bf(x)

for all (y, t) ∈ epi f . In particular, note that we cannot have b = 0 since this would gives
a⊺(y − x) ≥ 0 for all y ∈ D, which implies that x ∈ ∂D, a contradiction. Therefore, we
have

t ≥ f(x) + (a/b)⊺(x− y), (y, t) ∈ epi f

so if we define the affine underestimator g(y) = f(x) + (a/b)⊺(x− y), then g ≤ f̃ ≤ f ,
but g(x) = f(x), which implies that f̃(x) = f(x).
When f is closed, note that epi f is a closed convex set, so it is the intersection of all

the half-spaces that contain it. Define

H = {(a, b, c) ∈ Rn+2 : (a, b) ̸= 0, inf
(x,t)∈epi f

(a⊺x+ bt) ≥ c}.

Note that each triple (a, b, c) corresponds to a half-space that contains epi f . It follows
that

epi f =
⋂

(a,b,c)∈H

{(x, t) : a⊺x+ bt ≥ c}.

It is clear that b ≥ 0. It suffices to show that⋂
(a,b,c)∈H

{(x, t) : a⊺x+ bt ≥ c} =
⋂

(a,b,c)∈H,b>0

{(x, t) : a⊺x+ bt ≥ c},
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since each of the half-spaces on the right correspond to the epigraph of an affine underes-
timator of f .
It is obvious that⋂

(a,b,c)∈H

{(x, t) : a⊺x+ bt ≥ c} ⊂
⋂

(a,b,c)∈H,b>0

{(x, t) : a⊺x+ bt ≥ c}.

Suppose (x, t) satisfies a⊺x+ bt ≥ c for all nonvertical half-spaces (b > 0) that contain
epi f , but there exists a0, c0 with (a0, 0, c0) ∈ H so that a⊺0x < c0.
Note that H contains at some element (a1, b1, c1) with b1 ̸= 0, so consider the halfspace

defined by (a0 + ϵa1, ϵb1, c0 + ϵc1) where ϵ <
c0−a⊺0x

|a⊺t x+b1t| or (ϵ = 1 if |a⊺tx+ b1t| = 0) which

contains epi f , since

(a0 + ϵa1)
⊺y + ϵb1s ≥ a⊺0y + ϵ(a⊺1y + b1s) ≥ c0 + ϵc1,

for all (y, t) ∈ epi f . But note that

(a0 + ϵa1)
⊺x+ ϵb1t = a⊺0x+ ϵ(a⊺1x+ b1t) < c0

but this contradicts the fact that (x, t) is in the intersection of all nonvertical half-spaces
containing epi f .

Exercise 2.30 (3.30). The convex hull of a function f : Rn → R is defined as

g(x) = inf{t : (x, t) ∈ conv epi f}.

Show that if h is convex and h ≤ f then h ≤ g.

Proof. This follows immediately from considering the epigraph of h and noting that
a ≤ b implies that epi a ⊃ epi b, where a, b are functions.

Exercise 2.31 (3.31). Let f be a convex function. Define the function g as

g(x) = inf
α>0

f(αx)

α
.

� Show that g is homogeneous.

Proof. First, note that g(0) = 0 since we take the limit as α → ∞. Hence, the
result is clear for t = 0. For t > 0, note that

g(tx) = inf
α>0

f(αtx)

α
= inf

β>0
t
f(βx)

β
= tg(x).

� Show that g is the largest homogeneous underestimator of f .

Proof. If h is homogeneous and h ≤ f , then note that h(αx) = αh(x) ≤ f(αx),

which implies that h(x) ≤ f(αx)
α

for α > 0. This proves the result since g is the

infimum of f(αx)
α

over α > 0.
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� Note that

g(tx+ (1− t)y) = inf
α>0

f(αtx+ α(1− t)y)
α

≥ inf
α>0

f(αtx) + f((1− t)αy)
α

≥ inf
α>0

f(αtx)

α
+ inf

β>0

f((1− t)βy)
β

= g(tx) + g((1− t)y)
= tg(x) + (1− t)g(y).

Exercise 2.32 (3.36). Derive the conjugates of the following functions:

� f(x) = maxi=1,...,n xi on Rn.

Proof. We have

f ∗(y) =

{
0, y ⪰ 0,1⊺y = 1

∞, otherwise

If some entry yk < 0, then note that we can take xj = −tδjk, so that

y⊺x−max
i
xi = −tyk

t→∞−−−→∞.

If y ⪰ 0 but 1⊺y > 1, then taking x = t1 gives

y⊺x−max
i
xi = t(1⊺y − 1)

t→∞−−−→∞.

Similarly, if y ⪰ 0 and 1⊺y < 1, then taking x = −t1 gives

y⊺x−max
i
xi = t(−1⊺y + 1)

t→∞−−−→∞.

Finally, if y ⪰ 0 and 1⊺y = 1, then y⊺x ≤ maxi xi so y
⊺x − maxi xi ≤ 0 with

equality if y⊺x = maxi xi giving a value f ∗(y) = 0.

� f(x) =
∑r

i=1 x(i) on Rn.

Proof. If yk < 0 for some k, then taking xj = −tδjk gives y⊺x− 0 = −tyk
t→∞−−−→∞.

So we have y ⪰ 0.

If yk > 1 for some k, then taking xj = tδjk gives y⊺x− t = t(yk − 1)
t→∞−−−→ ∞. So

we have y ⪯ 1.

If 1⊺y > r then taking x = t1 gives y⊺x − tr = t(1⊺y − r) t→∞−−−→ ∞. We have a
similar case for 1⊺y < r giving 1⊺y = r.

It follows that

f ∗(y) =

{
0, 0 ⪯ y ⪯ 1,1⊺y = r

∞, otherwise
.
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� f(x) = xp on R++ for p > 1.

Proof. Note that for fixed y > 0, xy − xp has a maximum at x = (y/p)
1

p−1 (find
the critical point and note the concavity of the function). It follows that

f ∗(y) = x(y−xp−1) = y(y/p)
1

p−1 (1−1/p) = (y/p)q

pq
= (1−p)(y/p)q, 1

p
+
1

q
= 1.

Exercise 2.33 (3.37). Show that the conjugate of f(X) = tr(X−1) with dom f = Sn
++

is given by
f ∗(Y ) = −2 tr(−Y )1/2, dom f ∗ = −Sn

+.

Proof. Note the definition of the conjugate in this case is given by

f ∗(Y ) = sup
X∈dom f

(⟨Y,X⟩ − f(X)).

in other words, we take the induced inner product when defining the conjugate. d The
rest of the problem follows from simply taking the derivative.

Exercise 2.34 (3.38). Let f : R→ R be increasing with f(0) = 0 and let g be its inverse.
Define

F (x) =

∫ x

0

f(a) da, G(y) =

∫ y

0

g(a) da.

Show that F and G are conjugates. Give a simple graphical interpretation of Young’s
inequality,

xy ≤ F (x) +G(y).

Proof. Draw the graphs of F,G to see the inequality. The equality case exactly shows
that F and G are conjugates.

Exercise 2.35 (3.39). In this problem, we derive some properties of conjugate functions.

� Define g(x) = f(x) + c⊺x+ d, where f is convex. Express g∗ in terms of f ∗.

Proof. Note that

g∗(y) = sup
x∈dom g

(y⊺x− c⊺x− d− f(x)) = sup((y− c)⊺x− f(x))− d = f ∗(y− c)− d.

� Let f(x, z) be convex in (x, z) and define g(x) = infz f(x, z). Find g
∗.

Proof. We have

g∗(y) = sup
x
(y⊺x− inf

z
f(x, z)) = sup

x,z
(y⊺x− f(x, z)) = f ∗(y, 0).
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Exercise 2.36 (Conjugate of conjugate). Show that a conjugate of the conjugate of a
closed convex function is itself: f = f ∗∗ if f is closed and convex.

Proof. Note that f ∗∗ ≤ f - this follows from Fenchel’s Inequality:

f(x) ≥ x⊺y − f ∗(y)

and taking the supremum over y gives f ≥ f ∗∗.
Let f be closed and convex. Suppose f ∗∗ < f . Take (x, f ∗∗(x)) ̸∈ epi f . Since epi f is

a closed convex set, there exists a strict separating hyperplane (a, b) with a ̸= 0 so that

a⊺y + bt < c, (y, t) ∈ epi f

while
a⊺x+ bf ∗∗(x) > c.

Note that in particular b ≤ 0, otherwise t→∞ gives a contradiction. Subtracting the
two inequalities gives

a⊺(y − x) + b(t− f ∗∗(x)) < 0

or equivalently
z⊺y − z⊺x− t+ f ∗∗(x) < 0

where we define z = (a/− b). Taking the supremum over y, t ∈ epi f gives

f ∗(z) + f ∗∗(x) < z⊺x,

but this contradicts Fenchel’s inequality.
If b = 0, then if a0 ∈ dom f ∗ we claim that for sufficiently small ϵ > 0, the pair

(a+ ϵa0,−ϵ) defines a strict separating hyperplane:

(a+ ϵa0)
⊺(y − x)− ϵ(t− f ∗∗(x)) = a⊺(y − x) + ϵ(a⊺0(y − x)− t+ f ∗∗(x))

≤ a⊺(y − x) + ϵ(a⊺0(y − x)− f(y) + f ∗∗(x))

≤ a⊺(y − x) + ϵ(f ∗(a0) + f ∗∗(x)− a⊺0x).

Since a⊺(y − x) < 0, we can take ϵ > 0 sufficiently small so that we have

a⊺(y − x) + ϵ(f ∗(a0) + f ∗∗(x)− a⊺0x) < 0.

Hence, we can apply the same argument as with b < 0.

Exercise 2.37 (3.40). Suppose f : Rn → R is convex and twice continuous differentiable.
Suppose x and y are related by y = ∇f(x) and that ∇2f(x) ≻ 0.

� Show that ∇f ∗(y) = x.

� Show that ∇2f ∗(y) = ∇2f(x)−1.

Proof. Recall the implicit function theorem: Suppose F ∈ C1(Rn × Rm;R) satisfies
F (u, v) = 0 and DvF (u, v) is nonsingular in a neighborhood of (u, v). Then, there exists
φ ∈ C1(Rn;Rm) that satisfies v = φ(u) and

F (u, φ(u)) = 0

in a neighborhood of u.
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Define F (x, y) = ∇f(x) − y. Note that the conditions of the implicit function
theorem are satisfied. Hence, there exists a function φ ∈ C(Rn) so that x = φ(y) and
F (φ(y), y) = 0 in a neighborhood of (x, y).
Now, note that

∇(∇f(g(y))) = ∇2f(g(y))Dg(y) = I,

which implies that Dg(y) = (∇2f(g(y)))
−1

in a neighborhood of y. It follows that
∇2f ∗(y) = (∇2f(x))−1.
Now, since ∇2f(x) ≻ 0, it follows that x = g(y) is a unique maximizer of the conjugate

function, so
f ∗(y) = y⊺g(y)− f(g(y)).

Taking the derivative gives

∇f ∗(y) = ∇(y⊺g(y))−∇f(g(y))
= g(y)∇y⊺ + y⊺∇g(y)−∇f(g(y))
= g(y) + y⊺∇g(y)− y⊺∇g(y)
= g(y).

It follows that ∇f ∗(y) = g(y) = x.

Remark 2.38. I also remember seeing this implicit theorem method in the context of
several complex variables in a lecture on the Legendre transform by Prof. Maciej Zworski
(and of course in several other areas).

Exercise 2.39 (3.42). Let f0, . . . , fn : R → R be continuous functions. For x ∈ Rn,
we say that f =

∑n
i=1 xifi approximates f0 with tolerance ϵ > 0 over the interval [0, T ]

if |f(t) − f0(t)| ≤ ϵ for 0 ≤ t ≤ T . Now we choose a fixed tolerance ϵ > 0 and define
the approximation width as the largest T such that f approximates f0 over the interval
[0, T ]:

W (x) = sup{T :

∣∣∣∣∣
n∑

i=1

xifi(t)− f0(t)

∣∣∣∣∣ ≤ ϵ for 0 ≤ t ≤ T}.

Show that W is quasiconcave.

Proof. Note that W (x) ≥ α if and only if for all 0 ≤ t ≤ α,∣∣∣∣∣
n∑

i=1

xifi(t)− f0(t)

∣∣∣∣∣ ≤ ϵ.

Notice that for each t ∈ [0, α) this corresponds to the intersection of two half-spaces, so
we have the intersection of infinitely many half-spaces which is convex.

Exercise 2.40 (3.43). Prove the first-order condition for quasiconvexity: a differentiable
function f : Rn → R, with dom f convex, is quasiconvex if and only if for all x, y ∈ dom f ,

f(y) ≤ f(x) =⇒ ∇f(x)⊺(y − x) ≤ 0.

Proof. We first show the result for n = 1. We can use the characterization of quasiconvex
functions in R:

� if f is nondecreasing, then f ′(x) ≥ 0 so f(y) ≤ f(x) implies that y ≤ x so it follows
that f ′(x)(y − x) ≤ 0.
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� if f is nonincreasing, then f ′(x) ≤ 0 so f(y) ≤ f(x) implies that x ≤ y so it follows
that f ′(x)(y − x) ≤ 0.

� if x, y are both on the nondecreasing side, or both on the nonincreasing side, the
result follows the above analysis. Otherwise, f ′(x) and y − x have opposite signs
which proves the result.

Alternate proof of sufficiency: Suppose f(x) ≥ f(y). Then, f(x+ t(y − x)) ≤ f(x) for
all 0 < t ≤ 1. It follows that

f(x+ t(y − x))− f(x)
t

→ f ′(x)(y − x) ≤ 0.

Proof of necessity: Suppose f(y) ≤ f(x). By assumption, this implies that ∇f(x)⊺(y−
x) ≤ 0. Without loss of generality suppose x ≤ y. It suffices to show that for z ∈ [x, y],
we have

f(z) ≤ f(x).

Suppose to the contrary that there exists z0 ∈ [x, y] with f(z0) > f(x). It follows that
we can also find z1 ∈ [x, y] with f(z1) > f(x) with f ′(z1) < 0. But this contradicts the
assumption that f(z1) > f(x) implies f ′(z1)(x− z) ≤ 0.
Now, define g(t) = f(x+ tv) for x ∈ dom f and v arbitrary. If f is quasiconvex, then so

is g. Conversely, if g(s) ≤ g(t) implies that g′(t)(s−t) ≤ 0, we have f(x+sv) ≤ f(x+tv),
and it suffices to show that (t− s)∇f(x+ tv)⊺v ≤ 0. But this follows immediately from
the fact that g′(t) = ∇f(x+ tv)⊺v.
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3 Convex Optimization

3.1 Notation and Definitions

Definition 3.1 (Standard Form). We will use the notation

argminf0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m

hi(x) = 0, 1 ≤ l ≤ p

to describe the problem of finding x that minimizes f0(x) among all x satisfying the condi-
tions. We call x ∈ Rn the optimization variable, f0 : Rn → R the objective function,
fi(x) ≤ 0 the inequality constraints, and hi(x) = 0, the equality constraints.

The domain of the optimization problem is defined as

D =
m⋂
i=1

dom fi ∩
m⋂
i=1

domhi.

Definition 3.2 (Optimal Value). The optimal value p∗ of the problem (given the above
notation) is defined as

p∗ = inf{f0(x)|fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p}

Definition 3.3 (Optimal Point). We say that x∗ is an optimal point if x∗ is feasible and
f0(x

∗) = p∗.

Definition 3.4 (ε-suboptimal). A feasible point x with f0(x) ≤ p∗ + ε is called ε-
suboptimal.

Definition 3.5 (Locally Optimal). A feasible point x is locally optimal if there is an
R > 0 such that

f0(x) = inf{f0(z) : fi(z) ≤ 1 ≤ i ≤ m

hi(z) = 0, 1 ≤ i ≤ p, ∥z − x∥2 ≤ R}.

3.2 Equivalent problems

We call two problems equivalent if from a solution of one, a solution of the other is readily
found, and vice versa.

Remark 3.6. A more formal definition of equivalence is possible to give, but is slightly
complicated and unnecessary for our purposes.

Ways we can form equivalent optimization problems are as follows:

� Change of variables: Suppose φ : Rn → Rn is one-to-one, with image covering the
problem domain D, i.e., φ(domφ) ⊃ D. We define functions f̃i and h̃i as

f̃i(z) = fi(φ(z)), h̃i(z) = hi(φ(z)).
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� Transformation of objective and constraints: Suppose ψ0 : R → R is monotone
increasing, ψ1, . . . , ψm : R → R satisfy ψi(u) ≤ 0 if and only if u ≤ 0, and
ψm+1, . . . , ψm+p : R→ R satisfy ψi(u) = 0 if and only if u = 0. We define f̃i and
h̃i as the compositions:

f̃i = ψi ◦ fi, h̃i = ψm+i ◦ hi.

� Slack variables: Note that fi(x) ≤ 0 if and only if there is si ≥ 0 that satisfies
fi(x) + si = 0. Hence, we can transform inequality constrainsts to a non-negativity
and an equality constraint.

� Eliminating equality constrainsts: If we can explicitly parameterize the solutions
of the equality constrainsts hi(x) = 0 using a parameter z, then we can eliminate
them as follows: Suppose φ : Rk → Rn is such that x satisfies hi(x) = 0 if and only
if there is some z ∈ Rk with x = φ(z). Then, the optimization problem

argmin f̃0(z) = f0(φ(z))

s.t. f̃i(z) = fi(φ(z)) ≤ 0

is equivalent to the standard form problem.

� Eliminating linear equality constraints: Suppose all the equality constraints are
linear: Ax = b. If Ax = b is inconsistent (b ̸∈ R(A)), then the original problem
is infeasible. Otherwise, let x0 denote any solution of the equality constraints.
Let F ∈ Rn×k be any matrix with R(F ) = N (A), so that the general solution of
Ax = b is given by Fz + x0 for z ∈ Rk (we can choose F to be full rank so that
k = n− rankA). Then, we can set φ(z) = Fz + x0, and repeat as above.

� Introducing equality constrainsts: instead of the general case, we present a useful
example. Consider the problem:

argminf0(A0x+ b0)

s.t. fi(Aix+ bi) ≤ 0, 1 ≤ i ≤ m

hi(x) = 0, 1 ≤ l ≤ p

where x ∈ Rn, Ai ∈ Rki×n and fi : Rki → R. It is convenient to intrudoce
yi = Aix+ bi, to form the equivalent problem

argminf0(y0))

s.t. fi(yi) ≤ 0, 1 ≤ i ≤ m

yi = Aix+ bi, i = 0, . . . ,m

hi(x) = 0, 1 ≤ l ≤ p

3.3 Convex Optimization

Definition 3.7 (Convex Optimization Problem). A convex optimization problem is one
of the form

argminf0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m

a⊺i x = bi, 1 ≤ l ≤ p

where f0, . . . , fm are convex.
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Note that the domain D is convex as the intersection of the convex level sets. If f0 is
quasiconvex, we say the problem is a quasiconvex optimization problem.
One of the most important properties of convex optimization solutions is that any

locally optimzal point is also globally optimal.

Theorem 3.8 (First-order Optimality Criterion)

Suppose f0 ∈ C1, so that for all x, y ∈ dom f0,

f0(y) ≥ f0(x) +∇f0(x)⊺(y − x).

Let X denote the feasible set. Then x is optimal if and only if x ∈ X and

∇f0(x)⊺(y − x) ≥ 0, ∀y ∈ X.

We will see how this theorem presents itself in the context of various convex optimization
problems:

� Unconstrained problems: We claim the problem reduces to the well known necessary
and sufficient condition ∇f0(x) = 0. Suppose x is optimzal. For all y sufficiently
close to x, they are feasible since dom f0 is open. Take y = x − t∇f0(x). For t
small and positive, y is feasible, so

∇f0(x)⊺(y − x) = −t∥∇f0(x)∥22 ≥ 0,

which implies that ∇f0(x) = 0.

� Problems with equality constraints only: Suppose we only have the constraint Ax =
b, and the feasible set is nonempty. The optimality condition is ∇f0(x)⊺(y− x) ≥ 0
for all y satisfying Ay = b. Since x is feasible, we have y = x+v for some v ∈ N (A),
so we have

∇f0(x)⊺v ≥ 0, ∀v ∈ N (A).

But if a linear function is non-negative on a subspace, it must be zero on the
subspace (since it is closed under scalar multiplication), so we have

∇f0(x) ⊥ N (A)

or equivalently ∇f0(x) ∈ R(A⊺): there exists η ∈ Rp such that

∇f0(x) + A⊺η = 0.

The is the classical Lagrange multiplier optimality condition, which we will derive
in the next chapter.

� Minimization over the nonnegative orthant: Suppose we have min f0(x) over x ⪰ 0.
Note that the first order condition is of the form ∇f0(x)⊺(y − x) ≥ 0 for x, y ⪰ 0,
so it is easy to see that ∇f0(x)⊺x = 0 exactly. But this is the sum of non-negative
numbers, so they must each be 0, or in other words:

x ⪰ 0, ∇f0(x) ⪰ 0, xi(∇f0(x))i = 0.

The last condition is called complementarity, since it means that the sparcity
patterns of x and ∇f0(x) complement each other. We will encounter this again in
the next chapter.
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Theorem 3.9 (First-order optimality for quasiconvex problems)

If f0 ∈ C1, then x is optimal if

x ∈ X, ∇f0(x)⊺(y − x) > 0 ∀y ∈ X \ {x}.

Some important distinctions between this condition and the one for convex optimization
problems:

� This is only a sufficient condition for optimality - it is easy to show that this is not
necessary for any optimal point.

� The condition requires ∇f0 to be nonzero.

A general approach to solving quasiconvex optimization problems relies on the repre-
sentation of the sublevel sets as a family of convex functions. Let φt : Rn → R, t ∈ R a
family of convex functions that satisfy

f0(x) ≤ t⇔ φt(x) ≤ 0,

and for each x, φt(x) is nonincreasing: φs(x) ≤ φt(x) for s ≥ t. Let p∗ denote the optimal
value of the quasiconvex optimization problem. If the problem

find x

s.t. φt(x) ≤ 0

fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

is feasible, then p∗ ≤ t. Conversely, if the problem is not feasible, then p∗ ≥ t. This
allows us to essentially binary search on p∗ via bisection.

Remark 3.10. This chapter mainly introduced notation without much interesting theory.
Though, the first-order condition had interesting corollaries. Problems are mostly simple
examples. Onward to chapter 5, which is arguably the most important one.
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4 Duality

4.1 The Lagrangian

Consider the standard form optimization problem

argminf0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m

hi(x) = 0, 1 ≤ l ≤ p

We define the Lagrangian L : Rn × Rm × Rp → R associated with the problem as

L(x, λ, η) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

where domL = D × Rm × Rp. We refer to λi as the Lagrange multiplier associated with
the ith inequality constraint, and analogously with νi. The vectors λ, ν are called the
dual variables, or Lagrange multiplier vectors associated with the problem.

Definition 4.1 (Lagrange Dual). We define the dual function g : Rm × Rp → R as
follows: for λ ∈ Rm, ν ∈ Rp

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(
f0(x) +

m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)
.

Note that the dual function is concave as the pointwise infimum of a family of affine
functions of λ, ν even when the original problem is not convex.

Theorem 4.2 (Lower bounds on optimal value)

Suppose p∗ is the optimal value of the standard form problem. For any λ ⪰ 0 and
any ν we have

g(λ, ν) ≤ p∗.

Proof. Suppose x̃ is feasible (fi(x̃) ≤ 0, hi(x̃) = 0) and λ ⪰ 0. Then,

m∑
i=1

λifi(x̃) +

p∑
i=1

νihi(x̃) ≤ 0.

This implies that

g(λ, ν) = inf
x∈D

L(x, λ, ν) ≤ L(x̃, λ, ν) ≤ f0(x̃).

Since x̃ is an arbitrary feasible point, the original statement follows.
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Example 4.3 (Linear approximation interpretation)

Consider the equivalent unconstrained problem

min f0(x) +
m∑
i=1

I−(fi(x)) +

p∑
i=1

I0(hi(x)),

where I0 is infinity for u ̸= 0 and 0 otherwise and I−(u) is infinity for u > 0 and 0
otherwise.
Suppose we replace I−(u) with λiu for some λi ≥ 0 and I0(u) with νiu. We can

interpret these as a soft approximation of the indicator functions. Although this is a
poor approximation, it is at least an underestimator of the original function, which
immediately yields the lower bound property.

Now, we present some basic examples.

� Least-squares solution of linear equations: We consider the problem argminx⊺x
subject to Ax = b. The lagrangian is L(x, ν) = x⊺x+ ν⊺(Ax− b). Since L(x, ν) is
convex and quadratic, we can find the minimizing x via the optimilaity condition:

∇xL(x, ν) = 2x+ A⊺v = 0,

which gives x = −(1/2)A⊺ν. Therefore, the dual function is given by

g(ν) = L(−(1/2)A⊺ν, ν) = −(1/4)ν⊺AA⊺ν − b⊺ν,

which is a concave quadratic function.

� Standard form LP : Consider the standard form problem

argmin c⊺x

s.t. Ax = b

x ⪰ 0

The lagrangian is given by

L(x, λ, ν) = c⊺x−
n∑

i=1

λixi + ν⊺(Ax− b) = −b⊺ν + (ν + A⊺ν − λ)⊺x.

The dual function is given by

g(λ, ν) = −b⊺ν + inf
x
(c+ A⊺v − λT )x,

which is easily determined analytically since a linear function is bounded below only
when it is identically zero. So we obtain g(λ, ν) = −∞ except when c+A⊺ν−λ = 0,
in which case it is −b⊺ν.

� Two-way partitioning problem: consider the nonconvex problem

argmin x⊺Wx

s.t. x2i = 1
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for W ∈ Sn. Notice that we restrict xi to 1,−1. Since the feasible set is finite,
we can simply check the objective value of each feasible point - but this grows
exponentially with n.

Note that Wij can be interpreted as the cost of xi, xj having the same sign and
−Wij can be interpreted as the cost of xi, xj has opposite signs. Now, we derive
the dual. The Lagrangian is given by

L(x, ν) = x⊺Wx+
n∑

i=1

νi(x
2
i − 1) = x⊺(W + diag(ν))x− 1⊺ν

Now,

g(ν) = inf
x
x⊺(W + diagν)x− 1⊺ν =

{
−1⊺ν, W + diag(ν) ⪰ 0,

−∞, otherwise
.

This yields lower bounds on the optimal value of the problem. For example, taking
ν = −λmin(W )1 which is dual-feasible, we obtain a bound on the optimal value p∗,
given by

p∗ ≥ −1⊺ν = nλmin(W ).

4.2 Lagrange dual and conjugate function

Consider the problem:

argmin f(x)

s.t. x = 0

The dual function is given by

g(ν) = inf
x
(f(x) + ν⊺x) = − sup

x
((−ν)⊺x− f(x)) = −f ∗(−ν).

More generally, consider an optimization problem of the form:

argmin f0(x)

s.t. Ax ⪯ b

Cx = d.

We have

g(λ, ν) = inf(f0(x) + λ⊺(Ax− b) + ν⊺(Cx− d))
= −b⊺λ− d⊺ν + inf

x
(f0(x) + (A⊺λ+ C⊺ν)⊺x)

= −b⊺λ− d⊺ν − f ∗
0 (−A⊺λ− C⊺ν).

Note that
dom g = {(λ, ν)| − A⊺λ− C⊺ν ∈ dom f ∗

0}.

Now, we present some examples:
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� Equality constrained norm minimization: Consider the problem argmin ∥x∥
subject to Ax = b. Note that the conjugate function of f0 = ∥ · ∥ is given by

f ∗
0 (y) =

{
0, ∥y∥∗ ≤ 1,

∞, otherwise

Using the above result, we obtain

g(ν) = −b⊺ν − f ∗
0 (−A⊺ν) =

{
−b⊺ν, ∥A⊺ν∥∗ ≤ 1

−∞, otherwise

� Entropy maximization: Consider the problem argmin f0(x) =
∑n

i=1 xi log xi
subject to Ax ⪯ b,1⊺x = 1, where dom f0 = Rn

++. The conjugate function is given
by

f ∗
0 (y) =

n∑
i=1

eyi−1,

with dom f ∗
0 = Rn. It follows that t he dual function is given by

g(λ, ν) = −b⊺λ− ν − e−ν−1

n∑
i=1

e−a⊺i λ,

where ai is the ith column of A.

4.3 Lagrange dual problem

We start with a natural question: what is the best lower bound that can be obtained
from the Lagrange dual function? The leads us to the Lagrange dual problem:

argmax g(λ, ν)

λ ⪰ 0.

The original standard form problem is called primal in this context. Note that the
Lagrange dual problem is a convex optimization problem, whether or not the primal
problem is convex.
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Example 4.4 (Making dual constraints explicit)

Note that it is not uncommon for dimdom g < m+ p. In this case, we identify the
affine hull of dom g, defining it as a set of linear constraints. This means that we
can identify the equality constraints that are hidden in the original Lagrange dual
problem.
Recall the Lagrange dual function for the standard form LP is given by g(λ, ν) =
−b⊺ν for A⊺ν − λ + c = 0, and −∞ otherwise. Then, notice that we can form an
equivalent dual problem as

argmax − b⊺ν
λ = A⊺ν + c ⪰ 0

Similarly, if we have argmin c⊺x subject to Ax ⪯ b, the dual function is given by
g(λ) = −b⊺λ for A⊺λ+ c = 0 and −∞ otherwise. The Lagrange dual of the LP is
given by

argmax − b⊺λ
A⊺λ+ c = 0

λ ⪰ 0

4.4 Weak and Strong Duality

Theorem 4.5 (Weak Duality)

Let d∗ denote the optimal value of the Lagrange dual problem, which is the best
lower bound on p∗, the optimal value of the primal. Then, we have

d∗ ≤ p∗.

In particular, note that this inequality holds even when d∗, p∗ are infinite. The difference
p∗ − d∗ is referred to as the duality gap.
We say that strong duality holds if the duality gap is 0. It is important to note that

strong duality does not hold in general. If the problem is convex, it usually holds, but
not always.

4.4.1 Slater’s condition

Consider the problem given by

argmin f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

Ax = b,

where f0, . . . , fm are convex. We have the following important condition for strong
duality.
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Theorem 4.6 (Slater’s Condition)

If there exists x ∈ relintD such that

fi(x) < 0, i = 1, . . . ,m, Ax = b,

then we have strong duality: d∗ = p∗. Such a point satisfying the condition is called
strictly feasible.

If we have affine constraints, then Slater’s condition can be relaxed to the following:
if the first k constraint functions f1, . . . , fk are affine, then if there exists x ∈ relintD
such that

fi(x) ≤ 0, i = 1, . . . , k, fi(x) < 0, i = k + 1, . . . ,m, Ax = b.

Remark 4.7. Slater’s condition (and the refinement) also implies that the dual optimal
value is attained when d∗ > −∞ - that is there exists (λ∗, ν∗) with g(λ∗, ν∗) = d∗ = p∗.

Before showing the proof, we present some examples.

� Least-squares solution of linear equations: Recall the problem

argmin x⊺x

s.t. Ax = b

with the associated dual problem

argmax −(1/4)ν⊺AA⊺ν − b⊺ν,

which is an unconstrained concave quadratic maximization problem.

Slater’s condition reduces to feasibility, so p∗ = d∗ provided that b ∈ R(A). In
particular, even when b ̸∈ R(A), there is z with A⊺z = 0, b⊺z ̸= 0. It follows that
the dual function is unbounded above alon {tz : t ∈ R} so d∗ =∞.

� Lagrange dual of LPs: Note that the weaker form of Slater’s conditiond implies
that strong duality holds for any LP provided that the primal problem is feasible.
We can also apply the result to the dual to show that strong duality holds for LPs
if the dual is feasible. Hence, the only case where strong duality fails is if both
the primal and dual are infeasible. We will show an example of this in a future
exercise.

� Entropy maximization: Consider the problem

argmin
n∑

i=1

xi log xi

s.t. Ax ⪯ b

1⊺x = 1

with D = Rn
+. We derived the dual problem before as

argmax −b⊺ − ν − e−ν−1

n∑
i=1

e−a⊺i λ, λ ⪰ 0.

Slater’s condition says that the duality gap is zero if there exists an x ≻ 0 with
Ax ⪯ b and 1⊺x = 1.
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� Minimum volume covering ellipsoid: the problem is given by

argmin log detX−1

a⊺iXai ≤ 1, i = 1, . . . ,m,

with domain D = Sn
++. The dual problem can be expressed as

argmax log det

(
m∑
i=1

λiaia
⊺
i

)
− 1⊺λ+ n

λ ⪰ 0

where we take log detX = −∞ if X ̸≻ 0.

Slater’s condition for the problem is that there exists X ∈ Sn
++ with a⊺iXai ≤ 1 for

i = 1, . . . ,m. This is always satisfied, so strong duality is always obtained.

Example 4.8 (Nonconvex problem with strong duality)

A nonconvex quadratic problem with strong duality: On rare occasions, strong
duality is obtained for a nonconvex problem. Consider the problem of minimizing a
nonconvex quadratic function over the unit ball:

argmin x⊺Ax+ 2b⊺x

x⊺x ≤ 1,

where A ∈ Sn, A ̸⪰ 0, b ∈ Rn. This is somtimes called the trust region problem.
The Lagrangian is given by

L(x, λ) = x⊺Ax+ 2b⊺x+ λ(x⊺x− 1) = x⊺(A+ λI)x+ 2b⊺x− λ,

so the dual is given by

g(λ) =

{
−b⊺(A+ λI)†b− λ, A+ λ ⪰ 0, b ∈ R(A+ λI)

−∞, otherwise

Note that the corresponding Lagrange dual problem can be expressed as

argmax −
n∑

i=1

(q⊺i b)
2/(λi + λ)− λ

λ ≥ −λmin(A),

where λi and qi are the eigenvalues and corresponding orthonormal eigenvectors of
A, and we interpret (q⊺i b)

2/0 as 0 is q⊺i b = 0 and ∞ otherwise.
Although the original problem is not convex, we always have zero optimal duality

gap for this problem. In fact, strong duality holds for any optimization problem
with quadratic objective and one quadratic inequality constraint, provided Slater’s
condition holds. This is proved using the S-procedure, but this requires more
technology than we currently have.
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Remark 4.9. See the images on Pg. 233-234 for a geometric interpretation of weak duality.
I particularly like figures 5.3 and 5.4.

Now, we prove Slater’s condition.

Proof. Consider the original primal problem with f0, . . . , fm convex, and assume Slater’s
condition holds: There exists x̃ ∈ relintD with fi(x̃) < 0 and Ax̃ = b. To simplify the
proof, we assume that relintD = D◦, and rankA = p. We also assume that p∗ is finite.
Consider the set

A = G + (Rm
+ × {0} × R+),

where

G = {(f1(x), . . . , fm(x), h1(x), . . . , hp(x), f0(x)) ∈ Rm × Rp × R : x ∈ D}.

It is clear that A is convex if the underlying problem is convex. We define a second
convex set B as

B = {(0, 0, s) ∈ Rm × Rp × R|s < p∗}.
First, we claim that A ∩ B = ∅. To prove this, suppose (0, 0, t) ∈ A ∩ B. Since

(0, 0, t) ∈ B we have t < p∗. Since (0, 0, t) ∈ A, there exists x with fi(x) ≤ 0 , i =
1, . . . , amAx − b = 0, and f0(x) ≤ t < p∗, which is impossible since p∗ is the optimal
value of the primal.
By the separating hyperplane theorem, there exists (λ̃, ν̃, µ) ̸= 0 and α such that we

have
(u, v, t) ∈ A =⇒ λ̃⊺u+ ν̃⊺v + µt ≥ α,

(u, v, t) ∈ B =⇒ λ̃⊺u+ ν̃⊺v + µt ≤ α,

Note that we must have λ̃ ⪰ 0 and µ ≥ 0 in order the first inequality to hold. We
must also have µt ≤ α for all t < p∗ by the second inequality, so µp∗ ≤ α. Therefore, for
any x ∈ D, we have

m∑
i=1

λ̃ifi(x) + ν̃⊺(Ax− b) + µf0(x) ≥ α ≥ µp∗.

If µ > 0, then we can divide by µ to obtain that for all x ∈ D,

L(x, λ̃/µ, ν̃/µ) ≥ p∗.

Now, we minimize over x to obtain g(λ, ν) ≥ p∗ (after rescaling). Since weak duality
implies that g(λ, ν) ≤ p∗, we have g(λ, ν) = p∗.
Now, suppose µ = 0. For all x ∈ D, we have

m∑
i=1

λ̃fi(x) + ν̃⊺(Ax− b) ≥ 0.

Applying this to x̃ which satisfies Slater’s condition, we have

m∑
i=1

λ̃ifi(x̃) ≥ 0.

Since fi(x̃) < 0 and λ̃i ≥ 0, we can conclude that λ̃ = 0. Since (λ̃, ν̃, µ) ̸= 0, and λ̃ = 0,
µ = 0, we can conclude that ν̃ ̸= 0. It follows that for all x ∈ D, ν̃⊺(Ax− b) ≥ 0. But
x̃ satisfies ν̃⊺(Ax̃− b) = 0, and since x̃ ∈ D◦, there are points in ν̃⊺(Ax− b) < 0 (take
x = x̃ − ϵy for small ϵ > 0 and ν̃⊺Ay ≥ 0) unless A⊺ν̃ = 0, but this contradicts that
rankA = p.
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4.4.2 Max-min duality

For simplicity, assume there are no equality constraints. We can easily extend the results
to cover these cases.
First, note that

sup
λ⪰0

L(x, λ) = sup
λ⪰0

(
f0(x) +

m∑
i=1

λifi(x)

)
=

{
f0(x), fi(x) ≤ 0 i = 1, . . . ,m

∞, otherwise

Proof. Suppose x is not feasible and fi(x) > 0 for some i. Then supλ⪰0 L(x, λ) = ∞
since we can choose λj = 0 for j ̸= i and λi → ∞. On the otherhand, if fi(x) ≤ 0,
i = 1, . . . ,m, then the optimal choice of λ is λ = 0 and supλ⪰0 L(x, λ) = f0(x).

Therefore, the optimal value of the primal problem is

p∗ = inf
x
sup
λ⪰0

L(x, λ).

Recall that by the definition of the dual function

d∗ = sup
λ⪰0

inf
x
L(x, λ).

Therefore, weak duality can be expressed as the inequality

sup
λ⪰0

inf
x
L(x, λ) ≤ inf

x
sup
λ⪰0

L(x, λ)

and strong duality is given by

sup
λ⪰0

inf
x
L(x, λ) = inf

x
sup
λ⪰0

L(x, λ)

Note that the first inequality does not depend on any properties of L by the max-min
inequality: For any f : Rn × Rm → R and W ⊂ Rn, Z ⊂ Rm, we have

sup
Z

inf
W
f(w, z) ≤ inf

W
sup
Z
f(w, z).

When equality holds, we say that f satisfies a strong max-min property or the
saddle-point property. In the case of strong duality, this corresponds to the case where
f : Rn × Rm → R is the Lagrangian of a problem with W = Rn and Z = Rm

+ .

Definition 4.10 (Saddle-point). We refer to a pair w̃ ∈ W , z̃ ∈ Z a saddle-point for f if

f(w̃, z) ≤ f(w̃, z̃) ≤ f(w, z̃)

for all w ∈ W , z ∈ Z.

Note that if x∗ and λ∗ are primal and dual optimal points for a problem in which
strong duality obtains, they form a saddle-point for the Lagrangian. The converse is
also true: if (x, λ) is a saddle-point of the Lagrangian, then x is primal optimal, λ is
dual optimal, and the duality gap is 0 (we proved this in a previous exercise). A useful
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theorem to keep in mind, which is a generalization of the famous Von Neumann minimax
theorem is as follows:

Theorem 4.11 (Sion’s minimax theorem)

Let X be a compact convex subset of a topological vector space and Y a convex
subset of a topological vector space. If f is a real-valued function on X × Y , then f
satisfies the strong min-max property if both of the following properties hold:

� f(x, ·) is upper semicontinuous and quasi-concave on Y for all x ∈ X,

� f(·, y) is lower semicontinuous and quasi-convex on X for all y ∈ R.

4.5 Optimality conditions

4.5.1 Certificates of suboptimality

If we can find a dual feasible (λ, ν), then we establish a lower bound on the optimal value
of the primal by definition. Therefore, a dual feasible point provides a proof or certifiacte
that p∗ ≥ g(λ, ν). Strong duality implies the existence of arbitrarily good certificates.
This allows us to bound how suboptimal a give feasible point is: if x is primal feasible

and (λ, ν) is dual feasible, then

f0(x)− p∗ ≤ f0(x)− g(λ, ν),

which implies that x is ε-suboptimal where ε := f0(x) − g(λ, ν). Similarly, (λ, ν) is
ε-suboptimal for the dual problem.
In particular, this is useful in order to establish stopping criterion for algorithms based

on the relative or absolute suboptimality gap.

4.5.2 Complementary slackness

Suppose the primal and dual optimal values are attaned and equal. Let x∗ be primal
optimal and (λ∗, ν∗) be dual optimal. Then,

f0(x
∗) = g(λ, ν)

= inf
x

(
f0(x) +

m∑
i=1

λ∗i fi(x) +

p∑
i=1

ν∗i hi(x)

)

≤ f0(x
∗) +

m∑
i=1

λ∗i fi(x
∗) +

p∑
i=1

ν∗i hi(x
∗)

≤ f0(x
∗).

But this implies all the inequalities are equalities. We can draw several interesting
conclusions from this:

� x∗ minimizes L(x, λ∗, ν∗) over x.

�

∑m
i=1 λ

∗
i fi(x

∗) = 0 which implies that λ∗i fi(x
∗) = 0, i = 1, . . . ,m. The second

condition is known as complementary slackness. It can be restated as

λ∗i > 0 =⇒ fi(x
∗) = 0,
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or
fi(x

∗) < 0 =⇒ λ∗i = 0.

Roughly speaking, it says that the ith Lagrange multiplier is zero unless the ith
constraint is active at the optimum.

4.5.3 KKT conditions

Now, we make the assumption that f0, . . . , fm, h1, . . . , hm are differentiable, but we still
make no assumptions about convexity.
Now, let x∗ and (λ∗, ν∗) be any primal and dual optimal points with zero duality gap.

Since x∗ minimizes L(x, λ∗, ν∗) over x, it follows that the gradient must vanish at x∗:

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +
p∑

i=1

ν∗i∇hi(x∗) = 0.

This implies that

fi(x
∗) ≤ 0 i = 1, . . . ,m

hi(x
∗) = 0 i = 1, . . . , p

λ∗i ≥ 0 i = 1, . . . ,m

λ∗i fi(x
∗) = 0 i = 1, . . . ,m

∇f0(x∗) +
m∑
i=1

λ∗i∇fi(x∗) +
p∑

i=1

ν∗i∇hi(x∗) = 0.

These are called the Karush-Kuhn-Tucker (KKT) optimality conditions. Any optimiza-
tion problem with differentiable objective and constraint functions for which strong
duality obtains, any pair of primal and dual optimal points must satisfy the KKT
conditions.

Proposition 4.12 (KKT for Convex Problems)

When the primal is convex, the KKT conditions are also sufficient for the points to
be primal and dual optimal.

Proof. Let x̃, (λ̃, ν̃) be the points in question. Note that the first two conditions
correspond to the primal feasibility of x̃. Since λ̃i ≥ 0, and L(x, λ̃, ν̃) is convex in x, the
last condition says that the gradient of L vanishes at x = x̃, so x̃ minimizes L(x, λ̃, ν̃)
over x. Therefore, we can conclude that

g(λ̃, ν̃) = L(x̃, λ̃, ν̃) = f0(x̃) +
m∑
i=1

λ̃ifi(x̃) +

p∑
i=1

ν̃ihi(x̃) = f0(x̃).

This proves that we have zero duality gap, which implies the result.

Remark 4.13. See examples 5.3, 5.4 in the text for some cases where we can use strong
duality and existence of optimal dual solutions to construct optimal primal solutions if the
minimizer of L(x, λ∗, ν∗) is unique. A typical case for this is for convex problems when
Lagrangian is a strictly convex function of x.
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4.6 Perturbation and sensitivity analysis

When strong duality is obtained, it is interesting to consider the sensitivity of the optimal
value with respect to perturbations of the constraints. Consider the problem given by

argmin f0(x)

fi(x) ≤ ui, i = 1, . . . ,m

hi(x) = vi, i = 1, . . . , p

When ui > 0, this corresponds to a relaxation of the ith constraint. Similarly, when
ui < 0, this corresponds to a tightening of the constraint.
We define

p∗(u, v) = inf{f0(x) : ∃x ∈ D, fi(x) ≤ ui, i = 1, . . . ,m, hi(x) = vi, i = 1, . . . , p}.

Note that we can perturb the problem so that it becomes infeasible, i.e., p∗(u, v) =∞.
Also note that if the original problem is convex, p∗ is a convex function of u and v -
this can be seen by noting that the epigraph is the closure of the set A that we defined
previously (we will show this in a future exercise).

Theorem 4.14

Suppose that strong duality holds, and that the dual optimum is attained. Let
(λ∗, ν∗) be optimal for the dual of the unperturbed problem. Then, for all u, v, we
have

p∗(u, v) ≥ p∗(0, 0)− (λ∗)⊺u− (ν∗)⊺v.

Proof. Suppose x is a feasible point for the perturbed problem. Then, by strong duality,
we have

p∗(0, 0) = g(λ∗, ν∗) ≤ f0(x) +
m∑
i=1

λ∗i fi(x) +

p∑
i=1

ν∗i hi(x)

≤ f0(x) + (λ∗)⊺u+ (ν∗)⊺v

It follows that for any feasible x for the perturbed problem, we have

f0(x) ≥ p∗(0, 0)− (λ∗)⊺u− (ν∗)⊺v.

Remark 4.15. Note that the inequality and the conclusions we can derive from it give a
lower bound on the optimal perturbed optimal value, but no upper bound. It follows that
the results we obtain are not symmetric with respect to loosening or tighening a constraint.

If p∗(u, v) is differentiable at (0, 0), then provided strong duality holds, we have

λ∗i = −
∂p∗(0, 0)

∂ui
, ν∗i = −∂p

∗(0, 0)

∂vi
.

This provides us with a characterization of the local sensitivities of the optimal value.
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Remark 4.16. Section 5.7 in the text presents several examples where equivalent refor-
mulations of a problem can lead to very different (and potentially much more useful) dual
problems. We encourage the reader of these notes to read over these examples.

4.7 Theorem of alternatives

In this section, we consider applying Lagrange duality theory to the problem of deter-
mining feasibility of a system of inequalities and equalities, i.e., the standard problem
with objective f0 = 0.

The dual function is given by

g(λ, ν) = inf
x∈D

(
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)
.

Note that this is homogeneous in (λ, ν), which implies that the optimal value of the dual
problem is given by

d∗ =

{
∞, λ ⪰ 0, g(λ, ν) > 0 is feasible,

0, λ ⪰ 0, g(λ, ν) > 0 is infeasible.

By weak duality, d∗ ≤ p∗, so it follows that if the inequality system λ ⪰ 0, and g(λ, ν) > 0,
then the original problem is infeasible. This is an example of weak alternatives.

Definition 4.17 (Weak alternatives). Two systems of inequalities (and equalities) are
called weak alternatives if at most one of the two is feasible.

Note that this holds whether or not the inequalities are convex. Moreover, the alternate
inequality system is always convex.

4.7.1 Strict inequalities

We can also consdier the feasibility of the strict inequality system given by

fi(x) < 0, i = 1, . . . ,m hi(x) = 0, i = 1, . . . , p.

The alternate inequality system is given by

λ ⪰ 0, λ ̸= 0, g(λ, ν) ≥ 0.

We first show directly that the two systems are weak alternatives. Suppose there exists
x̃ with fi(x̃) ≤ 0, hi(x̃) = 0. Then, for any λ ⪰ 0, λ ̸= 0, and ν,

λ1fi(x̃) + · · ·+ λmfm(x̃) + ν1h1(x̃) + · · ·+ νphp(x̃) < 0.

It follows that

g(λ, ν) = inf
x∈D

(
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

)
≤

m∑
i=1

λifi(x̃) +

p∑
i=1

νihi(x̃) < 0.

Therefore, feasibility of the primal system implies there does not exist (λ, ν) satisfying
the dual system.
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Definition 4.18 (Strong alternatives). Two systems of inequalities (and equalities) are
called strong alternatives if exactly one of the two is feasible.

When the original inequality system is convex, and some type of constraint qualification
holds, then the weak alternatives are actually strong alternatives. First, we prove this in
the context of the strict inequality system presented earlier.

Proof. We need a technical condition: there exists x ∈ relintD with Ax = b. This is
automatically satisfied by the consistency of equality constraints when D = Rn.
Consider the related problem

argmin s

fi(x)− s ≤ 0, i = 1, . . . ,m

Ax = b

The optimal value p∗ is negative if and only if there exists a solution to the strict primal
inequality system.
The Lagrange dual function fo the problem is

inf
x∈D,s

(
s+

m∑
i=1

λi(fi(x)− s) + ν⊺(Ax− b)

)
=

{
g(λ, ν) 1⊺λ = 1

−∞ otherwise

Therefore, we can express the dual problem as

argmax g(λ, ν)

λ ⪰ 0, 1⊺λ = 1.

Now, we observe that Slater’s condition holds for the related problem: by hypothesis,
there exists x̃ ∈ relintD with Ax̃ = b. Choosing any s̃ > maxi fi(x̃) yields a point (x̃, s̃)
which is strictly feasible. Therefore, d∗ = p∗ and the optimal d∗ is obtained.

Now, suppose that the strict inequality system is infeasible, which means that p∗ ≥ 0.
Then, (λ∗, ν∗) which obtain the dual optimum satisfy the alternate inequality system.
Similarly, if the alternate inequality system is feasible, then d∗ = p∗ ≥ 0, which shows
that the strict inequality system is infeasible. Therefore, the inequality systems are
strong alternatives.

The result easily generalizes for nonstrict inequality systems with the additional
assumption that p∗ is attained.

4.7.2 Example: Intersection of Ellipsoids

Consider m ellipsoids, described as

Ei = {x : fi(x) ≤ 0}

with fi(x) = x⊺Aix + 2b⊺i x + ci, i = 1, . . . ,m, where Ai ∈ Sn
++. We ask when the

intersection of these ellipsoids has nonempty interior. This is equivalent to the feasibility
of the set of strict quadratic inequalities:

fi(x) = x⊺Aix+ 2b⊺i x+ ci < 0, i = 1, . . . ,m.
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The dual function g is given by

g(λ) = inf
x
(x⊺A(λ)x+ 2b(λ)⊺x+ c(λ))

=

{
−b(λ)⊺A(λ)†b(λ) + c(λ), A(λ) ⪰ 0, b(λ) ∈ R(A(λ))
−∞, otherwise

where

A(λ) =
m∑
i=1

λiAi, b(λ) =
m∑
i=1

λibi, c(λ) =
m∑
i=1

λici.

Note that for λ ⪰ 0, λ ̸= 0, we have A(λ) ≻ 0, so it follows that

g(λ) = −b(λ)⊺A(λ)−1b(λ) + c(λ).

Therefore, the strong alternative of the system is

λ ⪰ 0, λ ̸= 0, −b(λ)⊺A(λ)−1b(λ) + c(λ) ≥ 0.

We can interpret the strong alternatives geometrically as follows: for any nonzero
λ ⪰ 0, the ellipsoid

Eλ = {x : x⊺A(λ)x+ 2b(λ)⊺x+ c(λ) ≤ 0}

contains E1 ∩ . . . , Em, since fi(x) ≤ 0 implies that
∑m

i=1 λifi(x) ≤ 0.
Now, Eλ has empty interior if and only if

inf
x
(x⊺A(λ)x+ 2b(λ)⊺x+ c(λ)) = −b(λ)⊺A(λ)−1b(λ) + c(λ) ≥ 0.

Therefore, the alternate system implies that Eλ has empty interior.
Weak duality is obvious: if the strong alternative holds, then Eλ contains E1 ∩ · · · ∩ Em

and has empty interior, so the intersection has empty interior. The fact that these are
strong alternatives states the fact that if the intersection E1 ∩ · · · ∩ Em has nonempty
interior, then we can construct an ellipsoid Eλ that contains the intersection and has
empty interior.

Theorem 4.19 (Farkas’ Lemma)

The system of inequalities
Ax ⪯ 0, c⊺x < 0

where A ∈ Rm×n and c ∈ Rn, and the systems of equalities and inequalities

A⊺y = c = 0, y ⪰ 0

are strong alternatives.

Remark 4.20. I might refer back to the exercises if I find some future chapters challenging
or don’t follow some arguments. Most of the end of chapter problems feel like basic
exercises and translating definitions.
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5 Approximation and fitting

5.1 Norm Approximation

The simpliest version of a norm approximation problem is of the form

argmin ∥Ax− b∥,

where A ∈ Rm×n, b ∈ Rm and x ∈ Rn. A solution oof the problem is sometimes called an
approximate solution of Ax ≈ b in the norm ∥ · ∥.
Note that norm approximation is always convex and solvable. The optimal value is

zero if and only if b ∈ R(A), but the problem is more interesting otherwise. We assume
without loss of generality that m ≥ n. For m = n, the optimal point is A−1b, so we can
assume m > n.
There are many ways we can interpret the problem:

� Approximate interpretation: By expressing

Ax = x1a1 + . . . xnan,

where a1, . . . , am ∈ Rm are columns of A, we see that the goal of norm approximation
is to appximate b by a linear combination of columns of A, with deviation measured
in the norm ∥ · ∥.

� Estimation interpretation: Consider the linear measurement model

y = Ax+ v,

where y ∈ Rm, x ∈ Rn is a vector that is to be estimated, and v is measurement
error that is presumed to be small in norm. The most plausible guess for x is

x̂ = argmin
z
∥Az − y∥.

� Geometric interpretation:Consider the subspace A = R(A) ⊂ Rm and a poiont
b ∈ Rm. A projection of b onto A in the norm ∥ · ∥ is any point in A that is closest
to b.

The choice of norm leads to various interesting problems:

� Weighted norm approximation: If we define the W norm as ∥z∥W = ∥Wz∥, then
the problem argmin ∥Ax − b∥W = argmin ∥W (Ax − b)∥ is called a weighted
norm approximation problem, where W is a weighting matrix.

� Least-squares: Note that if we take ∥ · ∥2, then the problem is the famous least-
squares approximation problem, which has a closed form solution.

� Chebyshev/Minimax Approximation: Take ∥ · ∥∞. The approximation problem can
be cast as a linear program.

� Sum of absolute residuals: Taking ∥ · ∥1, we obtain a robust estimator (for reasons
that will be clear soon).
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5.2 Regularization

This is a common scalarization method used to solve bi-criterion problems. One form is
to minimize the weighted sum of the objectives:

argmin ∥Ax− b∥+ γ∥x∥,

where γ ∈ R+ traces out the optimal trade-off curve as it varies. Another common
method is

argmin ∥Ax− b∥22 + δ∥x∥2

where δ > 0 varies.

5.2.1 Tikhonov regularization

With Eucliden norms, this is known as Tikhonov Regularization:

argmin ∥Ax− b∥22 + δ∥x∥22 = x⊺(A⊺A+ δI)x− 2b⊺Ax+ b⊺b.

This has an analytical solution x = (A⊺A+ δI)−1A⊺b. Note that since A⊺A+ δI ≻ 0 for
any δ > 0, the regularized problem requires no rank or dimension assumptions.

5.2.2 Smoothing regularization

Consider ∥Dx∥ in place of x where D represents an approximate differentiation or
second-order differentiation operation. In other words, ∥Dx∥ represents a measure of the
smoothness of x.

5.2.3 ℓ1-norm regularization

Regularization with ℓ1-norm can be used a heuristic for finding a sparse solution. For
example, if we consider

argmin ∥Ax− b∥2 + γ∥x∥1
varying γ traces out an approximation of the optimal trade-off curve between ∥Ax− b∥2
and the sparsity of x. This can be recast and solved as an SOCP.

5.3 Reconstruction, smoothing, and de-noising

In reconstruction problems, we start with a signal x ∈ Rn, where the coefficients xi
correspond to the value of some function of time, evaluated at evenly spaced points. It
is usually assumed that xi ≈ xi+1. The signal x is corrupted by an additive noise v:
xc = x+ v. The goal is to form an estimate x̂ of the original signal x given xc.
A simple formulation of the reconstruction problem is the bi-criterion problem

argmin (∥x̂− xc∥2, φ(x̂)).

The function φ : Rn → R is convex, and is called the regularization function or smoothing
objective.
For example, the simplest reconstruction method uses the quadratic smoothing function

φquad(x) =
n−1∑
i=1

(xi+1 − xi)2 = ∥Dx∥22,
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where D ∈ R(n−1)×n is the bidiagonal matrix

D =


−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . −1 1 0
0 0 0 . . . 0 −1 1


The solution to the reconstruction problem can be solved and efficiently computed as

x̂ = (I + δD⊺D)−1xc.

Another example is total variation reconstruction, which is more useful for rapidly
varying signals. This is based on the function

φtv(x̂) =
n−1∑
i=1

|x̂i+1 − x̂i| = ∥Dx̂∥1.

Like the quadratic smoothing measure, this assigns large values to rapidly varying signals.
However, it assigns relatively less penalty to large values of |xi+1 − xi|.

5.4 Robust approximation

Let A = A+U where A ∈ Rm×n, A is a constant matrix and U is a random matrix with
mean zero. The stochastic robust approximation problem is to minimize the expectation
of ∥Ax− b∥,

argmin E∥Ax− b∥.

Although this is a convex optimization problem, this is usually not tractable because it
is very difficult to evaluate the objective or its derivatives.
This is possible to solve when A only takes finitely many values: Pr(A = Ai) = pi,

i = 1, . . . , k, where Ai ∈ Rm×n, 1⊺p = 1, p ⪰ 0. In this case, we have the sum of norms
problem

argmin
k∑

i=1

pi∥Aix− b∥,

or equivalently
argmin p⊺t,

s.t. ∥Aix− b∥ ≤ ti ∀i

If the norm is the Euclidean norm, the problem is a SOCP. If it is ℓ1, ℓ∞, it can be
expressed as an LP. Some variations on the problem are tractable, for example, the
stochastic robust least-squares problem

argmin E∥Ax− b∥22.

This is because the objective can be expressed as

E∥Ax− b∥22 = E(Ax− bUx)⊺(Ax− b+ Ux)

= (Ax− b)⊺(Ax− b) + Ex⊺U⊺Ux

= ∥Ax− b∥22 + x⊺Px,
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where P = EU⊺U . Therefore, this has the form of a regularized least-squares problem:

argmin ∥Ax− b∥22 + ∥P 1/2x∥22,

which has solution
x = (A

⊺
A+ P )−1A

⊺
b.

This aligns with our intuition about regularization: when A is subject to variation, the
vector Ax has more variation the larger x is, increasing the average value of ∥Ax− b∥2
by Jensen’s inequality. So we balance making Ax − b small with the desire to keep x
small. Conversely, we can also interpret the Tikhonov regularized least-squares problem
as a robust least-squares problem, taking account the variation in A.
Another interesting variation is considering a worst-case approach: Let A ∈ A ∈ Rm×n

describe the uncertainty of A, which is assume is nonempty and bounded. Define the
worst-case error of a candidate approximation solution x ∈ Rn as

e(x) = sup
A∈A
{∥Ax− b∥} .

The tractability of such a problem is highly dependent on A, despite the fact that it is
always a convex optimiation problem.

� Finite set: if A = {A1, . . . , Ak}, then we have the problem

argmin max
i=1,...,k

∥Aix− b∥.

This problem is equivalent to the one where take the polyhedral setA = conv{A1, . . . , Ak},
and can be cast in epigraph form. As before, if it is in Euclidean norm, this is an
SOCP. If it is ℓ1, ℓ∞, then it can be expressed as an LP.

� Norm bound error: we have that A is a norm ball: A = {A+ U : ∥U∥ ≤ a}. The
expression for e(x) can be simplified in several cases. If we take the Euclidean
norm on Rn and teh corresponding induced norm on Rm×n, then if Ax− b ̸= 0 and
x ̸= 0, then the supremum is attained for U = auv⊺ with

u =
Ax− b
∥Ax− b∥2

, v =
x

∥x∥2
.

The corresponding worst case error is e(x) = ∥Ax− b∥2+ a∥x∥2, which corresponds
to a regularized norm problem.

� Uncertainty ellipsoids: consider the following characterization as an ellipsoid of
possible values for each row:

A = {[a1, . . . , am]⊺ : ai ∈ Ei, i = 1, . . . ,m},

Ei = {ai = Piu : ∥u∥2 ≤ 1},
where Pi describes the variation in ai. We allow Pi to have a nontrivial nullspace, so
that we can model the situation when the variation in ai is restricted by a subspace.
Now, note that we have

sup
ai∈Ei

= |a⊺i x− bi| = |a
⊺
i x− bi|+ ∥P

⊺
i x∥2.

This result allows to solve several robust approximation problems.
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5.5 Solutions to selected problems

Exercise 5.1 (6.1). Show that for the log barrier penalty function, if ∥u∥∞ < a, then

∥u∥22 ≤
m∑
i=1

φ(ui) ≤
φ(∥u∥∞)

∥u∥2∞
∥u∥22.

Proof. Note that
m∑
i=1

φ(ui) =
m∑
i=1

∞∑
k=1

a2
(ui
a

)
from which both inequalities immediately follow.

Exercise 5.2 (6.4). Differentiable approximation of ℓ1-norm problem.

Proof. (a) Note that the derivative of the approximate problem at x̂ is zero giving

m∑
i=1

φ′(r̂i)ai =
m∑
i=1

r̂i(r̂i
2 + ε)−1/2ai = 0.

Now, the dual of the ℓ1-norm problem is

argmax
m∑
i=1

biλi

|λi| ≤ 1
m∑
i=1

λiai = 0.

From the dual-feasibility of λi = r̂i(r̂i
2 + ε)−1/2, we obtain the inequality

p∗ ≥
m∑
i=1

−biλi =
m∑
i=1

(a⊺i x̂− bi)λi =
m∑
i=1

r̂i
2(r̂i

2 + ε)−1/2.

Proof. (b) With part (a) in hand, note that

p∗ +
m∑
i=1

|r̂i|
(
1− |r̂i|

(r̂2i + ε)1/2

)
≥

m∑
i=1

|ri| = ∥Ax̂− b∥1.

Exercise 5.3 (6.6). Duals of some penalty function approximation problems.

Proof. First, note that the Lagrangian is given by

L(x, r, λ) =
m∑
i=1

φ(ri) + λ⊺(Ax− b− r),

which is only bounded if λ ∈ N (A⊺), giving the dual problem:

g(λ) =

{
−b⊺λ+

∑m
i=1 infri(φ(ri)− λiri) A⊺λ = 0,

−∞, otherwise
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But note that
inf
ri
(φ(ri)− λiri) = − sup

ri

(λiri − φ(ri)) = −φ∗(λi).

It follows that the general dual problem can be expressed as

argmax − b⊺λ−
m∑
i=1

φ∗(λi)

A⊺λ = 0.
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6 Unconstrained minimization

6.1 Introduction

We finally discuss algorithms for solving optimization problems, starting with the uncon-
strained problem:

argmin f(x)

where f : Rn → R is convex and twice differentiable. We assume the problem is solvable
and we denote the optimal value as p∗. It is clear that a necessary and sufficient condition
for x∗ to be optimal is ∇f(x∗) = 0, so solving the problem is equivalent to finding a
solution to the gradient problem, which is a set of n equations in n variables x1, . . . , xn.
Sometimes, the problem can be solved analyticcally, but most of the time, it requires an
iterative algorithm. By this, we mean an algorith that computes x0, x1, · · · ∈ dom f with
f(xk)→ p∗ as k →∞. The algorithm is terminated when f(xk)− p∗ ≤ ε, for some fixed
tolerance, ε > 0.
Furthermore, we assume that the starting point x0 ∈ dom f and the sublevel set Cf(x0)

is closed. Such a condition is satisfied for all x0 ∈ dom f if f is a closed.

6.2 Strong convexity

Definition 6.1 (Strong convexity). A function f ∈ C2(Rn;R) is strongly convex on S if
there exists m > 0 such that ∇2f(x) ⪰ mI, for all x ∈ S.

From strong convexity, we can derive interesting consequences.

Proposition 6.2

For x, y ∈ S, if f is m-strongly convex, then we have

f(y) ≥ f(x) +∇f(x)⊺(y − x) + m

2
∥y − x∥22.

Proof. By Taylor’s theorem, we have

f(y) = f(x) +∇f(x)⊺(y − x) + 1

2
(y − x)⊺∇2f(z)(y − z)

for some z on the line segment [x, y]. Note that strong convexity implies that the last
term is at least (m/2)∥y − x∥22.

Proposition 6.3

For any x ∈ S,

p∗ ≥ f(x)− ∥∇f(x)∥
2
2

2m
.

Proof. Note that the inequality from the previous proposition is a convex quadratic
function of y. Setting the gradient with respect to y equal to zero, we find that
ỹ = x− (1/m)∇f(x) minimizes the righthand side.
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Therefore,

f(y) ≥ f(x) +∇f(x)⊺(y − x) + m

2
∥y − x∥22

≥ f(y) +∇f(x)⊺(ỹ − x) + m

2
∥ỹ − x∥22

= f(x)− ∥∇f(x)∥
2
2

2m
.

Since this holds for all y ∈ S, the inequality holds.

Remark 6.4. Note that we can also interpret the above inequality as a condition for
suboptimality which generalizes the basic optimality condition:

∥∇f(x)∥2 ≤ (2mε)1/2 =⇒ f(x)− p∗ ≤ ε.

Proposition 6.5

For any x ∈ S and optimal point x∗, we have

∥x− x∗∥2 ≤
2

m
∥∇f(x)∥2.

Proof. Take y = x∗ to obtain

p∗ = f(x∗) ≥ f(x) +∇f(x)⊺(x∗ − x) + m

2
∥x∗ − x∥22

≥ f(x)− ∥∇f(x)∥2∥x∗ − x∥2 +
m

2
∥x∗ − x∥22

where we applied the Cauchy-Schwarz inequality. One obtains the desired result by
noting the fact that p∗ ≤ f(x) and rearranging the inequality.

Proposition 6.6 (Upper bound on ∇2f(x))

There exists a constant M such that for all x, y ∈ S,

∇2f(x) ⪯MI,

f(y) ≤ f(x) +∇f(x)⊺(y − x) + M

2
∥y − x∥22,

p∗ ≤ f(x)− 1

2M
∥∇f(x)∥22.

Proof. The inequality from Proposition 6.2 implies that the sublevel sets contained in
S are bounded, so S is bounded. Therefore, the maximum eigenvalue of ∇2f(x) is also
bounded above on S, since it is a continuous function of x on S. From this, each of the
results easily follow.
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6.2.1 Condition number of sublevel sets

From the strong convexity inequality mI ⪯ ∇2f(x) ⪯ MI for all x ∈ S, the ratio
κ =M/m is an upper bound on the condition number of ∇2f(x), which is the ratio of
its largest and smallest eigenvalues.
Define the width of a convex set C ⊆ Rn in direction q, where ∥q∥2 = 1 as

W (C, q) = sup
z∈C

q⊺z − inf
z∈C

q⊺z.

Then, the minimum and maximum width are defined as

Wmin = inf
∥q∥2=1

W (C, q), Wmax = sup
∥q∥2=1

W (C, q).

The condition number of the convex set C is then defined as

cond(C) =
W 2

max

W 2
min

.

Now, suppose f satisfies mI ⪯ ∇2f(x) ⪯MI for all x ∈ S, we will derive a bound on
cond(Cα), where p

∗ < α ≤ f(x0).
Note that with x = x∗, we have

p∗ + (M/2)∥y − x∗∥22 ≥ f(y) ≥ p∗ + (m/2)∥y − x∗∥22.

This implies that Bm ⊆ Cα ⊆ BM, where

Bk = {y : ∥y − x∗∥2 ≤ (2(α− p∗)/k)1/2}.

This gives an upper bound on the condition number of Cα,

cond(Cα) ≤M/m.

We can also gives a geometric interpretation of the condition number of the Hessian at
the optimum as follows. From the Taylor series expansion of f around x∗,

f(y) ≈ p∗ +
1

2
(y − x∗)⊺∇2f(x∗)(y − x∗),

for α close to p∗, we have that

Cα = {y : (y − x∗)⊺∇2f(x∗)(y − x∗) ≤ 2(α− p∗)}.

Therefore,
lim
α→p∗

cond(Cα) = κ(∇2f(x∗)).

6.3 Descent methods

In this section, we produce a minimizing sequence x(k) where

x(k+1) = x(k) + t(k)∆x(k),

and t(k) > 0 (except when x(k) is optimal). All the methods we describe are called descent
methods, which means that

f(x(k+1)) < f(x(k)),
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except when x(k) is optimal. This implies that for all k, we have

x(k) ∈ S ⊂ dom f.

From convexity, we know that ∇f(x(k))⊺(y − x(k)) ≥ 0 implies that f(y) ≥ f(x(k)), so
the search direction in a descent method must satisfy

∇f(x(k))⊺∆x(k) < 0.

The general descent method is then described as follows:

1. Take a starting point x ∈ dom f .

2. repeat until the stopping condition is satisfied:

a) Determine a descent direction ∆x.

b) Line search: choose a step size t > 0.

c) Update: x← x+ t∆x.

The line search method has two main variants:

� Exact line search: t is chosen to minimize f along the ray {x+ t∆x : t ≥ 0}:

t = argmin
s≥0

f(x+ s∆x).

This is used when the cost of the minimiation problem with one variable is low
compared to the cost of computing the search direction.

� Backtracking line search: t is chosen to approximately minimize or just reduce f
enough. The backtracking method depends on two constants α ∈ (0, 1/2), β ∈ (0, 1)
and is as follows:

1. Take a descent direction ∆x for f at x ∈ dom f .

2. Set t = 1.

3. while f(x+ t∆x) > f(x) + αt∇f(x)⊺∆x, set t← βt.

Note that since ∆x is a descent direction, for small enough t, we have

f(t+∆x) ≈ f(x) + t∇f(x)⊺∆x < f(x) + αt∇f(x)⊺∆x

which shows that the backtracking line search eventually terminates. The constant α
represents the fraction of decrease in f predicted by linear extrapolation that we will
accept.

6.4 Gradient descent method

A natural choice for ∆x = −∇f(x), which is called the gradient descent algorithm. The
stopping criterion is usually of the form ∥∇f(x)∥2 ≤ η.
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6.4.1 Convergence analysis

We present a basic convergence analysis. Take x+ = x+ t∆x for x(k+1) = x(k) + t(k)∆x(k).
Suppose f is strongly convex on S, so there exist m,M with mI ⪯ ∇2f(x) ⪯ MI
for all x ∈ S. Define f̃ : R → R by f̃(t) = f(x − t∇f(x)). We only consider t with
x− t∇f(x) ∈ S. If we use the inequality from Proposition 6.6, we obtain

f̃(t) ≤ f(x)− t∥∇f(x)∥22 +
Mt2

2
∥∇f(x)∥22.

Suppose we use exact line search. We obtain te, the exact step length that minimizes
f̃ . The righthand side is quadratic, minimized by t = 1/M , giving

f(x+) = f̃(te) ≤ f(x)− 1

2M
∥∇f(x)∥22.

If we subtract p∗ from both sides, we have

f(x+)− p∗ ≤ f(x)− p∗ − 1

2M
∥∇f(x)∥22.

We can combine this with ∥∇f(x)∥22 ≥ 2m(f(x)− p∗) to conclude that

f(x+)− p∗ ≤ (1−m/M)(f(x)− p∗).

Applying this recursively, we have

f(x(k))− p∗ ≤ ck(f(x(0))− p∗)

with c := 1 − m/M < 1, which implies that f(x(k)) converges to p∗ as k → ∞. In
particular, we must have f(x(k))− p∗ ≤ ε after at most

log((f(x(0))− p∗)/ε)
log(1/c)

iterations of the gradient method with exact line search.
For backtracking line search, we first show that the backtracking exit condition is

satisfied whenever t ∈ [0, 1/M ]. Note that 0 ≤ t ≤ 1/M implies that −t+ Mt2

2
≤ −t/2

from convexity, so it follows that

f̃(t) ≤ f(x)− t∥∇f(x)∥22 +
Mt2

2
∥∇f(x)∥22

≤ f(x)− (t/2)∥∇f(x)∥22
≤ f(x)− αt∥∇f(x)∥22,

since α < 1/2. Therefore, the backtracking line search terminates with either t = 1 or
t ≥ β/M .

� In the first case, we have

f(x+) ≤ f(x)− α∥∇f(x)∥22.

� In the second case, we have

f(x+) ≤ f(x)− (βα/M)∥∇f(x)∥22.
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It follows that
f(x+) ≤ f(x)−min{α, βα/M}∥∇f(x)∥22.

Defining c := 1−min{2mα, 2βαm/M} < 1 and proceeding with the same analysis as
with exact line search, we obtain

f(x+)− p∗ ≤ ck(f(x(0))− p∗)

which gives the same linear rate of convergence.
Some numerical results show the following:

1. The gradient method exhibits approximately linear convergence.

2. The choice of backtracking parameters α, β have a noticeable but not dramatic
effect on the convergence. Exact line search can improve the convergence, but the
effect is not large.

3. The convergence rate depends greatly on the condition number of the Hessian, or
the sublevel sets.

6.5 Steepest descent method

Note that the first-order Taylor expansion of f(x+ v) around x is

f(x+ v) ≈ f̂(x+ v) = f(x) +∇f(x)⊺v,

where the second term is called the directional derivative of f at x in direction v. We
now address the problem of choosing v so that the directional derivative is as negative as
possible, and we need to normalize by the length of v to make the question sensible.

Definition 6.7 (Normalized steepest descent direction). Let ∥ · ∥ be any norm on Rm.
We define a normalized steepest descent direction as

∆xnsd = argmin{∇f(x)⊺v : ∥v∥ = 1}.

We can also consider an unnormalized steepest descent step as

∆xsd = ∥∇f(x)∥∗∆xnsd,

where ∥ · ∥∗ is the dual norm. It follows that

∇f(x)⊺∆xsd = ∥∇f(x)∥∗∇f(x)⊺∆xnsd = −∥∇f(x)∥2∗.

This is interesting because it allows us to define steepest descent methods based on
a choice of norm with analysis based on the general method. See the text for various
examples of norms and a proof of linear convergence.

6.6 Newton’s method

For x ∈ dom f , the Newton step is given by

∆xnt = −∇2f(x)−1∇f(x).

Positive definiteness of ∇2f(x) implies that

∇f(x)⊺∆xnt = −∇f(x)⊺∇2f(x)−1∇f(x) < 0

unless ∇f(x) = 0, so the Newton step is a descent direction (unless x is optimal). There
are many interesting ways to motivate the Newton step:
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� Minimizer of second-order approximation: the second-order Taylor approximation
of f at x is

f̂(x+ v) = f(x) +∇f(x)⊺v + 1

2
v⊺∇2f(x)v,

which is a convex quadratic function of v that is minimized at v = ∆xnt.

� Steepest descent direction in Hessian norm: Note that for the quadratic norm
defined by the Hessian

∥u∥∇2f(x) = (u⊺∇2f(x)u)1/2,

the Newton step is also the steepest descent direction at x. The quadratic norm P
converges very rapidly when the Hessian, after the associated change of coordinates,
has a small condition number. So the choice of norm defined by the Hessian is very
well motivated.

� Solution of linearized optimality condition: if we linearize the optimality condition
∇f(x∗) = 0 near x, we obtain

∇f(x+ v) ≈ ∇f(x) +∇2f(x)v = 0,

with solution v = ∆xnt.

One interesting feature of the Newton step is that it is independent of linear changes
of coordinates. We can prove this as follows: suppose T ∈ Rn×n is nonsingular and define
f̃(y) = f(Ty). Then,

∇f̃(y) = T ⊺∇f(x), ∇2f̃(y) = T ⊺∇2f(x)T

where x = Ty. It follows that for f̃ at y, the Newton step is given by

∆ynt = −(T ⊺∇2f(x)T )−1(T ⊺∇f(x))
= −T−1∇2f(x)−1∇f(x)
= T−1∆xnt.

It follows that
x+∆xnt = T (y +∆ynt).

Definition 6.8 (Newton decrement). Define the quantity

λ(x) = (∇f(x)⊺∇2f(x)−1∇f(x))1/2

which is called the Newton decrement at x.

We note some useful properties of the Newton decrement, which will be a key tool in
the analysis of the method and as a stopping criterion.
If we let f̂ be a second-order approximation of f at x, then note that

f(x)− inf
y
f̂(y) = f(x)− f̂(x+∆xnt) =

1

2
λ(x)2.

We can also express the decrement as

λ(x) = ∥∆xnt∥∇2f(x) = (∆x⊺nt∇2f(x)∆xnt)
1/2.
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Furthermore, the constant −λ(x)2 = ∇f(x)⊺∆xnt is the one used in a backtracking
line search, and can be interpreted as the directional derivative of f in the direction of
the Newton step:

−λ(x)2 = ∇f(x)⊺∆xnt =
d

dt
f(x+∆xntt)

∣∣∣∣
t=0

.

Finally, the Newton decrement is also affine invariant. With the Newton decrement in
hand, we state Newton’s method:

� given a starting point x ∈ dom f , tolerance ε > 0

� repeat:

1. Compute the Newton step and decrement.

2. quit if λ2/2 ≤ ε

3. Choose step size t by backtracking line search

4. update x← x+ t∆xnt

6.6.1 Convergence analysis

We assume that f ∈ C2(Rn;R) and (m,M)-strongly convex. We also assume that the
Hessian of f is L-Lipschitz continuous on S. There are two main phases of the algorithm
- we will show that there exist η ∈ (0,m2/L] and γ > 0 such that

� Damped phase: If ∥∇f(x(k))∥2 ≥ η then

f(x(k+1))− f(x(k)) ≤ −γ.

Proof. Strong convexity implies that ∇2f(x) ⪯MI on S, so

f(x+ t∆xnt) ≤ f(x) + t∇f(x)⊺∆xnt +
M∥∆xnt∥22

2
t2

≤ f(x)− tλ(x)2 + M

2m
t2λ(x)2.

Then, note that t̂ = m/M satisfies the exit condition of the line search:

f(x+ t̂∆xnt) ≤ f(x)− m

2M
λ(x)2 ≤ f(x)− αt̂λ(x)2.

Therefore, the line search returns a step size t ≥ βm/M , resulting in a decrease of
the objective function

f(x+)− f(x) ≤ −αtλ(x)2

≤ −αβ m
M
λ(x)2

≤ −αβ m

M2
∥∇f(x)∥22

≤ −αβη2 m
M2

.

Therefore, the desired inequality is satisfied with γ = αβη2 m
M2 .
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� Quadratic phase: If ∥∇f(x(k))∥2 < η, then the backtracking line search selects
t(k) = 1 and

L

2m2
∥∇f(x(k+1))∥2 ≤

(
L

2m2
∥∇f(x(k))∥2

)2

.

Proof. First, we show that the backtracking line search selects unit steps provided

η ≤ 3(1− 2α)
m2

L
.

By the Lipschitz condition, for t ≥ 0 we have

∥∇2f(x+ t∆xnt)−∇2f(x)∥2 ≤ t∥∆xnt∥2,

so it follows that

|∆x⊺nt
(
∇2f(x+ t∆xnt)−∇2f(x)

)
∆xnt| ≤ tL∥∆xnt∥32.

If we define f̃ = f(x+ t∆xnt), the above inequality is equivalent to

|f̃ ′′(t)− f̃ ′′(0)| ≤ tL∥∆xnt∥32.

Now, we establish an upper bound on f̃(t). Note that

f̃ ′′(t) ≤ f̃ ′′(0) + tL∥∆xnt∥32 ≤ λ(x)2 + t
L

m3/2
λ(x)3.

Integrating the inequality, we obtain

f̃ ′(t) ≤ f̃ ′(0) + tλ(x)2 + t2
L

2m3/2
λ(x)3 = −λ(x)2 + tλ(x)2 + t2

L

2m3/2
λ(x)3.

Integrating another time, we obtain

f̃(x) ≤ f̃(0)− tλ(x)2 + t2
1

2
λ(x)2 + t3

L

6m3/2
λ(x)3.

Finally, taking t = 0, we obtain

f(x+∆xnt) ≤ f(x)− 1

2
λ(x)2 +

L

6m3/2
λ(x)3.

If ∥∇f(x)∥2 ≤ η ≤ 3(1− 2α)m2/L, then by strong convexity, we have

λ(x) ≤ 3(1− 2α)m3/2/L

so we obtain

f(x+∆xnt) ≤ f(x)− λ(x)2
(
1

2
− Lλ(x)

6m3/2

)
≤ f(x) + α∇f(x)⊺xnt.

Finally, if we apply the Lipschitz condition, note that

∥∇f(x+)∥2 = ∥∇f(x+∆xnt)−∇f(x)−∇2f(x)∆xnt∥2

=

∥∥∥∥∫ 1

0

(
∇2f(x+ t∆xnt)−∇2f(x)

)
∆xnt dt

∥∥∥∥
≤ L

2
∥∆xnt∥22

=
L

2
∥∇2f(x)−1∇f(x)∥22

≤ L

2m2
∥∇f(x)∥22.

So in particular, taking η = min 1, 3(1− 2α)m
2

L
gives the desired conclusion.
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First, we consider the second condition. Note that if ∥∇f(x(k))∥2 < η and η ≤ m2/L,
it follows that we also have ∥∇f(x(k+1))∥2 < η, so the condition holds for all l ≥ k.
Applying the inequality recursively, we have

L

2m2
∥∇f(x(l))∥2 ≤

(
L

2m2
∥∇f(x(k))∥2

)2l−k

≤ 2−2l−k

Therefore,

f(x(l))− p∗ ≤ 1

2m
∥∇f(x(l))∥22 ≤

2m3

L2
2−2l−k+1

,

which corresponds to a quadratic convergence rate.
Now, note that since f decreases by at least γ at every iteration, the number of damped

Newton steps cannot exceed
f(x(0) − p∗)/γ

since otherwise, f would be less than p∗. Furthermore, the number of iterations untill
f(x) − p∗ ≤ ε in the quadratic phase is no more than lg lg(ε0/ε) iterations, where
ε0 = 2m3/L2. Therefore, the total number of steps is bounded by

f(x(0))− p∗

γ
+ lg lg(ε0/ε)

Some general properties of Newton’s method that can be seen in practice are as follows:

� Convergence of Newton’s method is rapid in general, and quadratic near x∗.

� Newton’s method is affine invariant and completely insensitive to the choice of
coordinates or the condition number of the sublevel sets of the objective.

� Newton’s method scales well with problem size.

� Good performance of Newton’s method is not dependent on the choice of parameters.
In contrast, the choice of norm for steepest descent plays a critical role in its
performance.

The main disadvantage of Newton’s method is the cost of forming and storing the
Hessian, and the cost of computing the Newton step, which requires solving a set of linear
equations. Sometimes, it is possible to exploit problem structure to substantially reduce
the cost of computing the Newton step(sparse factorizations, band matrix structure, etc.)
Another family of alternatives to Newton’s method for unconstrained problems are

called quasi-Newton methods, which require less computational effort to form the search
direction, but share some of the strong advantages of Newton methods, such as local rapid
convergence. This will be covered more extensively in Part III, Numerical Optimization.
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6.7 Solutions to selected problems

Exercise 6.9 (9.1). Consider the problem argmin f(x) = (1/2)x⊺Px+ q⊺x+ r where
P ∈ Sn. Show that if P ⪰ 0 but the optimality condition Px∗ = −q doesn’t have a
solution, then the problem is unbounded below.

Proof. We have q ̸∈ R(P ), so we have express q = q̃ + q⊥ where q⊥ is the orthogonal
projection of q̃ onto R(P ) and q⊥ is nonzero. Then for x = tq⊥, note that

f(x) = (1/2)q⊺⊥Pq⊥ + tq⊺⊥q⊥ + r = tq⊺⊥q⊥ + r

which is unbounded below.

Exercise 6.10 (9.5). Suppose f is strongly convex with mI ⪯ ∇2f(x) ⪯MI. Let ∆x
be a descent direction at x. Show that the backtracking stopping condition holds for

0 < t ≤ −∇f(x)
⊺∆x

M∥∆x∥22
.

Use this to give an upper bound on the number of backtracking iterations.

Proof. Use the strong convexity upper bound and check condition is satisfied. The final
result holds from setting t0 ≤ 1 and iterating until βkt0 falls in the desired range, where
we can find an upper bound on k by taking logs.

Exercise 6.11 (9.7). Let ∆xnsd and ∆xsd be normalized and unnormalized steepest
descent directions for the norm ∥ · ∥. Prove the following identities:

1. ∇f(x)⊺∆xnsd = −∥∇f(x)∥∗.

2. ∇f(x)⊺∆xsd = −∥∇f(x)∥2∗.

3. ∆xsd = argminv (∇f(x)⊺v + (1/2)∥v∥2).
Proof. For 1, note that

−∥∇f(x)∥ = − sup
∥v∥=1

{|∇f(x)⊺v|} = inf
∥v∥=1
{∇f(x)⊺v},

where we note that fact that v is a descent direction so ∇f(x)⊺v < 0. 2 immediately
follows from the definition.
For 3, we define v = tw where t ≥ 0 and ∥w∥ = 1 is fixed. Optimizing over t and w

separately gives t = ∥∇f(x)∥∗ and w = ∆xnsd, which gives the result.

Exercise 6.12 (9.9). Show that the Newton decrement satisfies

λ(x) = sup
v⊺∇2f(x)v=1

(−v⊺∇f(x)) = sup
v ̸=0

−v⊺∇f(x)
(v⊺∇2f(x)v)1/2

.

Proof. Define the change of variables w = (∇2f(x))1/2v so that w⊺w = v⊺∇2f(x)v. Now,
note that

sup
v⊺∇2f(x)v=1

(−v⊺∇f(x)) = sup
w⊺w=1

(
([∇2f(x)]−1/2w)⊺∇f(x)

)
= sup

∥w∥2=1

(
w⊺(∇2f(x))−1/2∇f(x)

)
= sup

∥w∥2=1

〈
w, (∇2f(x))−1/2∇f(x)

〉
=
∥∥(∇2f(x))−1/2∇f(x)

∥∥
2

=
(
∇f(x)⊺∇2f(x)−1∇f(x)

)1/2
= λ(x).
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Exercise 6.13 (9.11). Suppose φ : R → R is increasing and convex, f : Rn → R is
convex, so g(x) = φ(f(x)) is convex. Furthermore, assume f, g are twice differentiable.
Compare the gradient method and Newton’s method, applied to f and g. How are the
search directions related? How are the methods related if an exact line search is used?

Proof. The first part just follows from the chain rule - we see that the gradient of g is a
positive multiple of the gradient of f , the with exact line search we choose the same step
size. Things could vary with the backtracking line search depending on the constant.
For Newton’s method, note that the iterate is given by

∇xgnt = −
(
φ′′(x)∇f(x)∇f(x)⊺ + φ′(x)∇2f(x)

)−1∇f(x)

=

(
I +

∑
k≥2

(
φ′′(f(x))

φ′(f(x))
∆xnt∇f(x)⊺

)k
)
∆xnt

= ∆xnt

(
1 +

∑
k≥2

(
φ′′(f(x))

φ′(f(x))

)k

(∇f(x)⊺∆xnt)k
)

= ∆xnt

1 +

(
φ′′(f(x))
φ′(f(x))

∇f(x)⊺∆xnt
)2

1−
(

φ′′(f(x))
φ′(f(x))

∇f(x)⊺∆xnt
)


which is a positive multiple of ∆xnt.

Remark 6.14. Note that the second equality follows from careful manipulations after
applying the Woodbury formula.

Exercise 6.15 (9.12). In this problem, we introduce the trust region Newton method.
If ∇2f(x) is singular, the Newton step ∆xnt = −∇2f(x)−1∇f(x) is not well defined.
Instead, we can define a search direction ∆xtr as the solution of

argmin (1/2)v⊺Hv + g⊺v s.t. ∥v∥2 ≤ γ,

where H = ∇2f(x), g = ∇f(x), γ > 0. The point x+∆xtr minimizes the second-order
approximation of f and x, subject to the constraint that ∥(x+∆xtr)− x∥2 ≤ γ.
The set {v : ∥v∥2 ≤ γ} is called the trust region. The parameter γ reflects our

confidence in the second-order model. Show that ∆xtr minimizes

(1/2)v⊺Hv + g⊺v + β̂∥v∥22

for some β̂.

Proof. The objective and constraint is differentiable, so we take the dual and apply the
KKT conditions, where β corresponds to the dual constraint. They are easy to derive
based on casework on whether or not H is singular.
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7 Equality constrained minimization

We describe methods for solving a convex optimization problem with equality constraints:

argmin f(x)

Ax = b,

where f : Rn → R is convex and twice differentiable, A ∈ Rp×n with rankA = p < n.
These assumptions mean that there are fewer equality constraints than variables, and
that the equality constraints are independent. We will assume that x∗ exists with
corresponding optimal value p∗.
Recall that x∗ ∈ dom f is optimal if and only if there exists v∗ ∈ Rp such that

Ax∗ = b, ∇f(x∗) + A⊺v∗ = 0

so solving the ECM problem is equivalent to finding a solution of the corresponding KKT
conditions. The primal feasibility equations are Ax∗ = b, which is a linear system. The
dual feasibility equations are ∇f(x∗) + A⊺v∗ = 0, which is in general, nonlinear.

� Note that we could eliminate the equality constraints to obtain an equivalent
unconstrained problem. So we could apply the methods of the previous section.

� Another approach is the solve the dual problem using an unconstrained minimization
method and use the dual solution to obtain a primal solution.

� We also have extensions of Newton’s method that directly handle the equality
constraints. This is preferable, because dualized problems often destroy special
problem structure (for example sparsity).

7.1 Equality constrained convex quadratic minimization

In the case of quadratic objectives, we can solve the primal and dual feasibility conditions
analytically. Consider the problem f(x) = (1/2)x⊺Px+ q⊺x+ r subject to the equality
Ax = b, where P = Sn

+ and A ∈ Rp×n.
We can write the optimality conditions as[

P A⊺

A 0

] [
x∗

v∗

]
=

[
−q
b

]
.

This is called the KKT system for the problem and the coefficient matrix is called the
KKT matrix.
When the KKT matrix is nonsingular, there is a unique optimal primal-dual pair

(x∗, v∗). If not, but the KKT system is solvable, then any solution yields an optimal pair.
IF the KKT system is not solvable, then the quadratic problem is unbounded below or
infeasible. Indeed, in this case, there exist v ∈ Rn, w ∈ Rp such that

Pv + A⊺w = 0, Av = 0, −q⊺v + b⊺w > 0.

If we let x̂ be any feasible point, then x = x̂+ tv is feasible for all t, and

f(x) = f(x̂) + t(v⊺Px̂+ q⊺v) + (1/2)t2v⊺Pv

= f(x̂) + t(−x̂⊺A⊺w + q⊺v)− (1/2)t2w⊺Av

= f(x̂) + t(−b⊺w + q⊺v)
t→∞−−−→ −∞.

Note that there are several conditions that are equivalent to the nonsingularity of the
KKT matrix:
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� N (P ) ∩N (A) = {0}.

� Ax = 0, x ̸= 0 implies that x⊺Px > 0 or P is positive definite on N (A).

� F ⊺PF ≻ 0 where F ∈ Rn×(n−p) is a matrix for which R(F ) = N (A).

As a special case, P ≻ 0 implies that the KKT matrix is nonsingular.

7.2 Eliminating equality constraints

As mentioned before, one general approach to solving the equality constrained problem
is to eliminate the equality constraint and use unconstrained methods. First, we find a
matrix F ∈ Rn×(n−p) so that R(F ) = N (A). The coresponding reduced problem is

argmin f̃(z) = f(Fz + x̂).

Remark 7.1. Note that there are many possible choices for the elimination matrix F .
But they all form equivalent problems, essentially through changes of coordinate systems.

Note that we can also construct an optimal dual variable v∗ as

v∗ = −(AA⊺)−1A∇f(x∗).

It is easy to verify that the dual feasibility condition holds.

Remark 7.2. It is interesting to see a ”least-squares” type of solution, but I suppose the
intuition follows from the fact that the dualized problem is a linear approximation with
the lower bound property.

7.3 Newton’s method with equality constraints

Now, we describe an extension of Newton’s method to include equality constraints. The
biggest differences are as follows:

� The initial point must be feasible.

� The definition of the Newton step is modified to account for the equality constraints.
In particular, the direction should be feasible: A∆xnt = 0.

In order to derive the Newton step, we replace the objective with its second-order
Taylor approximation:

argmin f̂(x+ v) = f(x) +∇f(x)⊺v + (1/2)v⊺∇2f(x)v

A(x+ v) = b.

This is a convex quadratic minimization problem with equality constraints, so we can
solve this analytically, as in Section 7.1. The Newton step is characterized by[

∇2f(x) A⊺

A 0

] [
∆xnt
w

]
=

[
−∇f(x)

0

]
,

where w is the associated dual variable for the quadratic problem. Note that Newton step
is only defined at points for which the KKT matrix is nonsingular. The algorithm and
analysis proceed similarly as before. It is interesting to note that the Newton decrement
stays the same as the unconstrained version.
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7.4 Infeasible-start Newton method

Note that the above method is a feasible descent method, in that we rely on the assumption
that x ∈ dom f and Ax = b, and all the future iterates are feasible (unless they are
optimal).
Instead, suppose we have x ∈ dom f but we do not assume it to be feasible. Our

goal is to find a step ∆x so that x+∆x satisfies (at least approximatly) the optimality
conditions. To do this, substite x + ∆x for x∗ and w for v∗ and use the first-order
approximation:

∇f(x+∆x) ≈ ∇f(x) +∇2f(x)∆x

in order to obtain

A(x+∆x) = b, ∇f(x) +∇2f(x)∆x+ A⊺w = 0.[
∇2f(x) A⊺

A 0

] [
∆xnt
w

]
= −

[
∇f(x)
Ax− b

]
.

Note that the equations are the same as the ones that define the Newton step at a feasible
point, except the second block component of the righthand side contains the residual
Ax− b. Of course, this vanishes when x is feasible. When we refer to ∆nt in the future
for equality constrained problems, it will refer to the above one in order to remove that
assumption that we start at a feasible point.

7.4.1 Primal-dual interpretation

Define the function r : Rn × Rp → Rn × Rp as

r(x, ν) = (rdual(x, ν), rpri(x, ν)),

where
rdual(x, ν) = ∇f(x) + A⊺ν, rpri(x, ν) = Ax− b

are the dual and primal residuals respectively. The optimality conditions are given by
r(x∗, ν∗) = 0. The first-order Taylor approximation of r is

r(y + z) ≈ r̂(y + z) = r(y) +Dr(y)z,

where Dr(y) ∈ R(n+p)×(n+p) is the derivative of r evaluated at y.
Now, we define the primal-dual Newton step as

Dr(y)∆ypd = −r(y).

It is easy to show that the primal-dual Newton step is related to the original Newton
step as

∆xnt = ∆xpd, w = ν+ = ν +∆νpd.

A nice property of r is that the norm of the residual decreases in the Newton direction:

d

dt
∥r(y + t∆ypd)∥22

∣∣∣∣
t=0

= 2r(y)⊺Dr(y)∆ypd = −2r(y)⊺r(y),

so it follows that
d

dt
∥r(y + t∆ypd)∥2

∣∣∣∣
t=0

= −∥r(y)∥2.
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This is contrary to the usual Newton direction, where we have

d

dt
f(x+ t∆x)

∣∣∣∣
t=0

= ∇f(x)⊺∆x

= −∆x⊺(∇2f(x)∆x+ A⊺w)

= −∆x⊺∇2f(x)∆x+ (Ax− b)⊺w,

which is not necessarily negative, unless x is feasible.
We also have a full step feasibility property: recall that the Newton step has the

property that A(x+∆xnt) = b, which implies that if x is feasibility, future iterates are
also feasible.
We can analyze the effect of a damped step on the equality constraint residual rpri.

With a step length t ∈ [0, 1], the next iterate is x+ t∆xnt, so we have

r+pri = A(x+∆xntt)− b = (1− t)(Ax− b) = (1− t)rpri.

It follows that

r(k) =

(
k−1∏
i=0

(1− t(i))

)
r(0),

where r(i) = Ax(i)− b. This shows that the residual at each step is in the direction of the
initial primal residual and is scaled down at every step. Once a full step is taken, all
future iterates are primal feasible.

7.4.2 Algorithm

With the residual in hand, we state the algorithm:

� Given x ∈ dom f, ν, tolerance ε > 0, α ∈ (0, 1/2), β ∈ (0, 1).

� repeat until Ax = b and ∥r(x, ν)∥2 ≤ ε.

1. Compute primal and dual Newton steps ∆xnt,∆νnt.

2. Backtracking line search on ∥r∥2:
a) t := 1

b) while ∥r(x+ t∆xnt, ν + t∆νnt)∥2 > (1− αt)∥r(x, ν)∥2, t← βt

3. Update: x← x+ t∆xnt, ν ← ν + t∆νnt.

The convergence analysis proceeds very similarly to the original Newton method.

7.5 Convex-concave games

Suppose r : RN → Rn is differentiable, the derivative satisfies a Lipschitz condition on S,
and ∥Dr(x)−1∥2 is bounded on S, where

S = {x ∈ dom r : ∥r(x)∥2 ≤ ∥r(x(0))∥}

is a closed set. Then the infeasible start Newton method, starting at x(0), converges to a
solution of r(x) = 0. But the general framework can also be applied in other settings -
we apply it to solving convex-concave games.
An unconstrained game on Rp × Rq is defined by the payoff function f : Rp+q → R,

where player 1 chooses a value u ∈ Rp and player 2 chooses a value v ∈ Rq. Based on the
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choises, player 1 pays player 2 the amount f(u, v). The goal of player 1 is to minimize
the payment while player 2 wants to maximize it.
If player 1 moves first, then player 2 knows the choice so they will choose v to maximize

f(u, v) which results in a payoff supv f(u, v). If player 1 assumes player 2 will make this
choice, they should choose u to minimize supv f(u, v), resulting in the overall payoff from
player 1 to player 2 as

inf
u
sup
v
f(u, v).

On the other hand, if player 2 makes the first choice, then we have the reverse strategy

sup
v

inf
u
f(u, v).

The minimax inequality (or weak duality) says that the first strategy is always greater
than or equal to the second one, and the difference between the two is referred to as the
advantage afforded to the player who makes the second move.
We say that (u∗, v∗) is a solution of the game if it satisfies a saddle-point property:

f(u∗, v) ≤ f(u∗, v∗) ≤ f(u, v∗).

If a solution exists, then we see that there is no advantage to making the second move
since f(u∗, v∗) is a common value of both payoffs (we showed this in a previous exercise).
The game is called convex-concave if for each v, f(u, v) is a convex function of u and

for each u, f(u, , v) is a concave function of v. When f is differentiable, a saddle-point is
characterized by ∇f(u∗, v∗) = 0.

7.5.1 Solution via infeasible start Newton method

Define the residual as

r(u, v) = ∇f(u, v) =
[
∇uf(u, v)
∇vf(u, v)

]
,

and apply the infeasible start Newton method. The convergence is guaranteed provided
that Dr = ∇2f has a boundedd inverse and satisfies the Lipschitz condition on S. There
is also a simple analog of the strong convexity condition: we say that a game with payoff
f is strongly convex-concave if for some m > 0, ∇2

uuf(u, v) ⪰ mI and ∇2
vvf(u, v) ⪯ −mI

for all (u, v) ∈ S. Unsurprisingly, the strong convex-concave condition implies the
bounded inverse condition.
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7.6 Solutions to selected problems

Exercise 7.3 (10.1). Recall the KKT matrix given by

K =

[
P A⊺

A 0

]
where P ∈ Sn

+, A ∈ Rp×n where rankA = p < n.

(a) Show that the following statements are equivalent:

1. The KKT matrix is nonsingular.

2. N (P ) ∩N (A) = {0}.
3. Ax = 0, x ̸= 0 =⇒ x⊺Px > 0.

4. F ⊺PF ≻ 0 where F ∈ Rn×(n−p) is a matrix for which R(F ) = N (A).

5. P + A⊺QA ≻ 0 for some Q ⪰ 0.

(b) Show that if the KKT matrix is nonsingular, then it has exactly n positive and p
negative eigenvalues.

Proof. First, note that if the KKT matrix is nonsingular, then KX = 0 implies that
X = 0. But note that KX = 0 is equivalent to PX1 + A⊺X2 = AX1 = 0, and we can
take X2 = 0 without loss of generality. It follows that N (P ) ∩N (A) = {0}.
For 2 implies 3, if Ax = 0 and x ̸= 0, then if x⊺Px = 0, then note that writing

P = B⊺B gives
x⊺B⊺Bx = ∥Bx∥22 = 0,

which implies that Bx = 0, so B⊺Bx = Px = 0, which implies that x ∈ N (P ) ∩N (A) =
{0}, a contradiction.
For 3 implies 4, note that dimN (A) = n− p by the rank-nullity theorem, so using 3,

we can construct a basis for N (A) which defines the matrix F which satisfies F ⊺PF ≻ 0
by construction.
For 4 implies 5,

x⊺(P + A⊺A)x = x⊺Px+ x⊺A⊺Ax = x⊺Px+ ∥Ax∥22.

If x ̸∈ N (A), then we are done. Otherwise, we can take x = Fz gives

z⊺F ⊺PFz + z⊺F ⊺A⊺AFz = z⊺F ⊺PFz > 0.

Finally, if we have 5 but the KKT matrix is singular, then we can find x, z not both
zero so that Px+ A⊺z = 0, Ax = 0, which implies that x⊺Px+ x⊺A⊺z = x⊺Px = 0. But
this implies that

x⊺(P + A⊺QA)x = x⊺Px+ x⊺A⊺QAx = 0

so we must have x = 0. But then A⊺z = 0, which contradicts the fact that rankA = p.

Exercise 7.4 (10.3). In this problem, we explore Newton’s method for solving the dual
of the equality constrained minimization problem. We assume that f ∈ C2, ∇2f(x) ≻ 0
for all x ∈ dom f and that for each v ∈ Rp, the Lagrangian L(x, ν) = f(x) + ν⊺(Ax− b)
has a unique minimizer x(ν).

(a) Show that the dual function g is twice differentiable, and find an expression for the
Newton step evaluated at ν.
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Proof. This essentially follows from the properties of the Legendre transform. We
obtain ∇g = −b + A∇f ∗(−A⊺ν) = −b + Ax(ν), and ∇2g = A∇2f ∗(−A⊺ν)A⊺ =
A∇2f ∗(x(ν))−1A⊺. From this we can easily derive the Newton decrement.
Part (b) is less trivial and follows from the block matrix inversion formula and fact

that the 2-norm is an operator norm, allowing us to obtain that ∥A∇2f(x)−1A−1∥ ≥ K,
from which we can easily derive the conclusion.

Exercise 7.5 (10.6). Show that the Newton decrement satisfies

f(x)− inf{f̂(x+ v)|A(x+ v) = b} = λ(x)2/2.

Proof. Note that by definition of the Newton step,

f(x)− inf{f̂(x+ v)|A(x+ v) = b} = f(x)− f̂(x+∆xnt)

= −∇f(x)⊺∆xnt − (1/2)∆x⊺nt∇2f(x)∆xnt

= λ(x)2/2
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