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§1 02/28/2022 - Recurrent Neural Networks

§1.1 Problem Setup

We consider settings in which the features x represent sequential data which may be
variable length. Some examples include

• Text of different lengths

• Audio recordings/waves

• Video recordings

The labels could be scalars y(sentiment analysis, identification), or they could be sequences
y(translation, transcription, captioning). There could also be no label at all! This is true
in unsupervised learning/generating modeling.

Some models we use include:

• Markov/n-gram models, hidden Markov models(HMMs)

• Embedding/clustering-based methods

• Convolutions(”temporal” convolutions which could be a 1-d convolution of a se-
quence, or a 3-d convolution over a video).

• Recurrent Neural Networks(RNNs)

• Long short-term memory(LSTM)

• Gated Recurrent Units(GRUs)

• Transformers

§1.2 Dealing with Variable Length Inputs

Before, when dealing with images, we could reasonably assume fixed size inputs. However,
with sequential data, it can be assumed that the input lengths will almost always vary.

To deal with this, we feed one piece of input called a token per layer.

Now, the input to layer `+ 1 is [a(`);x[`]].
The issues with this approach are the following:
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• We need as many layers as the max number of tokens. For very large inputs, we
would have extremely deep networks which are difficult to train.

• We have a different W (`) and b(`) for each layer, which is a massive number of items
to optimize.

• The later layers get trained very rarely, so it’s hard to generalize to longer sequences
at test time.

• Another issue is that a(1) is missing the previous layer output.

§1.3 Recurrent Neural Networks

To solve some of these issues, we use weight sharing: use the same parameters in every
layer.

Before: a(l+1) = σ(W (l+1)[a(l);x[l]] + b(l+1))

Now: a(l+1) = σ(W [a(l);x[l]] + b)

Remark 1.1. In backpropagation, W and b get a gradient signal from every single time
they are applied in the network, and we sum them to get the final gradient for W and b.

To address the problem with a(1), initialize some a(0) independently from the input x
and feed it into a(1).

Putting these two ideas together gives us the Recurrent Neural Network(RNN).

Remark 1.2. The values x[l] are encoded from some word2vec algorithm and the end vector
is the same length for each word.

The above applies for a sequence input, single output. If we wanted sequence input,
sequence output, we could output a scalar at each layer to get a sequence output.

In general, different applications give rise to different ways we use RNNs.

• One-to-one is not an RNN. It is like the ConvNet or Fully-Connected Net we have
worked with.

6
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• For translation, we might do something like the 4th diagram, since we need to see
the whole sentence before we can translate.

• Image Captioning is single input, sequence output.

• Sentiment Analysis is many to one, sequence input single output.

• Text generation would be many to many like the last diagram.

• The many-to-many can have many different styles depending on the application.

§1.4 Generating Outputs from RNNs

Generating a sequential output is done in an autoregressive manner: condition the
model on what you have seen before to generate the next thing.

Remark 1.3. In the above, we assume that the RNN is already trained, and then we use it
to generate text using the above scheme.

§1.5 Vanishing/Exploding Gradients

What is the gradient of the final loss with respect to W/b?

We have

d`

dW
=

L∑
k=1

d`

dak
dak

dW
,

d`

da1
=

d`

daL
daL

daL−1
. . .

da2

da1
,

so it is very easy for gradients to vanish or explode.
We can deal with this as follows:

• For exploding gradients, we can just clip the gradients - divide by the magnitude
of the large gradients to make them smaller.

• Vanishing gradients seem to require clever architecture choices: one idea we can
use to address this is a skip connection!
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• One architecture that does this is the LSTM: it is much older than skip-connections
but employs the same basic principle that allow better gradient flow by making
smarter connection choices.

8
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§2 02/28/2022 - Long Short-Term Memory(LSTM)

1. Start with a state a` and split into two states, c` the cell state, and h` the hidden
state. We have dc = dh, and da = dc + dh, since we exactly split a into two parts.

• c` is the part that acts like a skip so we have better gradient flow with long
sequences.

• h` deals with the nonlinearities which we need for expressivity.

2. For the cell state c`, we element-wise multiply by scalars f ` in [0, 1](we can do this
by passing some number into the sigmoid σ). This is the forget gate - when the
scalar is close to 0, we forget these dimensions, and when the scalars are close to
1, we retain the information and gradient flow. Then, we add a bias i`, which is
called the input to the cell state. This gives us c`+1. Overall, we have

c`+1 = c` � f ` + i`.

3. For the hidden state h`, we use an affine transformation using parameters W, b and
the input x. This is split into 4 equal parts each with the same dimension as h:

• The first piece determines f `, the element sent into the forget gate.

• The next piece is sent to a nonlinearity(doesn’t matter which one) and a piece
sent to the sigmoid which is elementwise-multiplied to the nonlinearity output.
This is called the input gate.

• The last piece is sent to a sigmoid to be used for the output gate.

4. We also take cl+1 and use a nonlinearity(doesn’t matter which one) and element-wise
multiplied by the component from the output gate to determine hl+1.

Remark 2.1. Some elements are important but others are pretty arbitrary. For example,
the GRU is very similar but it doesn’t have an output gate. However, it still performs pretty
well.

§2.1 Bidirectional RNN Models

Often, it can be useful to incorporate information from ”the future”. For example, when
doing speech transcription, if we take an audio waveform and transcribe that into words,

9
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it might be useful to see the piece corresponding to the end of the word before the
beginning of the word. Similarly, when doing contextual word representations, a word
might have different interpretations based on the words around it(”my back hurts”, ”my
back door is open”).

To do this, one option is to learn two RNNs! One processes the sequence in the forward
direction and one does the reverse. But they are learned jointly to produce a single
prediction/representation.

For a while, bidirectional LSTMs were the best model for learning language represen-
tations that can be fine tuned for a variety of downstream tasks(ELMo-embeddings from
language models). But now we have transformers(BERT).

10
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§3 3/7/2022 - Transformers

§3.1 Setup

We start with features x, which could be sequential data of variable length:

• Text

• Audio Waves

• Videos

We have labels y given by

• Sentiment analysis or translation

• audio transcription or speaker identification

• activity identification or video captioning

• No label! Unsupervised learning or generative modeling

We will use transformers to deal with these.

§3.2 Why Transformers

These have been massively influential in the past 4-5 years. They have been outcompeting
other deep architectures, such as RNNs in language modeling and ConvNets in vision
tasks.

Remark 3.1. This is pretty insane since we have such strong inductive biases for ConvNets.

There are other modern models using attention, while they are not really transformers.
They are the backbone of BERT and GPT and they perform language tasks at a level

which we didn’t think was possible a few years ago. For this reason, people dub these as
”foundation models”.

§3.3 Attention

Originally formulated for tasks with sequential outputs.

• Translating between languages, captioning an image

• The features may not be sequential: for example, we could have an image, pass it
through a model, and output a sequential caption vector.

11
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We will generate the output one step at a time. However, we need to know what we have
generated so far. We could handle this via autoregressive generation from an RNN, where
we feed model output into the next input until we have generated an entire sequence of
tokens.

Now, we motivate attention. For example with the caption, ”A bird flying over a body
of water .”, we maybe want the model to focus on the parts of the image focusing on the
recently generated token:

§3.3.1 What to attend over?

• If the features are words, we can attend over them directly.

• If the features are pixels, we can pass the image through the top layers of a Con-
vNet(usually pretrained on image net). This gives us an intermediate representation
of an image, and these low dimensional representations give some understanding of
high level features.

Remark 3.2. Why did they not train the layers end-to-end? Possibly for optimization
reasons, compute difficulties? But if this was done today, would probably be end-to-end.

§3.3.2 Details of Attention

After passing the image through the ConvNet, we have L context vectors from hopefully
corresponding to different semantic elements of the image. Then, we pass these into the
model to generate an output token. Then, we can pass this output into the next model
in an auto-regressive fashion.

Remark 3.3. Note that everything here is differentiable, so we can backprop and learn
k, q, v through auto-diff.

12
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§3.3.3 Self-Attention

The goal of self-attention is to handle sequential features as the input. We can think of
it as a layer that processes the entire sequence which produces intermediate activations
a1 → at. Now, we have

qt = q(xt), kt = k(xt), vt = v(xt).

Remark 3.4. One problem that we have is that self-attention is completely linear function
of the inputs. So we need to interweave these with nonlinearities.

Remark 3.5. We also have scaled dot product attention, where we divide each et,2 by
√
d.

This is similar to weight-initialization.

Remark 3.6. It seems like the ordering of the elements do not matter in the case of
self-attention. This is true and is handled by transformers.

§3.4 Transformers

§3.4.1 Transformer Encoder

We start with a vector X → Z, through a transformer encoder.

Remark 3.7. Note that for the feedforward layers, h
(1)
i depends only on xi and the same

is true for the later layers.

13
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§3.4.2 Positional Encoding

After the feedforward layer, a positional encoding is added to each h
(1)
t . This is some

information about what time-step each input corresponds to. Without this, the model
cannot distinguish between different permutations of the input sequence. One choice is
to add the following vector to ht:

Are there alternatives to this? What if we just concatenated the time step after the
first feed-forward layer? This appears worse because we care more about the relative
positioning:

What if we learned the positional encodings? This is used sometimes and sometimes
better due to expressivity. However, this has downsides: can’t generalize to longer
sequences, etc.

§3.4.3 Multi-Head Attention

Starting with self attention, we have a mechinism going from x → a, where a2 =∑
t αt,2vt. This works well if we have one particular key that we should pay attention to.

But what if we have multiple features that we want to pay attention to? We can do this
by having ”multiple heads”, which are independent attention blocks that pay attention
to different values.

Remark 3.8. Note that each of the key, query, and value functions for each head have their
own learned parameters.

14
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Remark 3.9. The final a2 and every at is given by concatenating the outputs from each
head and potentially feeding this through another linear layer.

Remark 3.10. In order to not make this not scale linearly in complexity with the number
of heads, we scale the dimension down proportionally to the number of heads, e.g., if 512
dimensions for 1 head, then 64 dimensions for 8 heads.

The final picture for the encoder is given by

§3.4.4 Transformer Decoder

As before, we feed the outputs of the decoder into the Transformer decoder as input.
However, at training time, we feed ground truth sentences in the decoder.

§3.4.5 Masked Attention

During training, we are passing entire sequences instead of passing in partial sequences
since this is more computationally efficient. However, the model cannot be looking at
the future to generate earlier elements from later ones. To do this, we ”mask” the keys
and values corresponding to future timesteps.

15



Vishal Raman (April 27, 2022) CS 182

16



Vishal Raman (April 27, 2022) CS 182

§4 03/09/2022 - Transformer Models

The original transformer is a sequence-to-sequence model for translation. These typically
follow an encoder-decoder architecture and the transformer does well at handling these
tasks. We will go into sequence-to-sequence models more in the future.

§4.1 Encoder: BERT

During training, input tokens(words) are randomly masked with p = 0.15. The model
must predict these tokens before they were masked. The hypothesis is that it allows
BERT to learn word level representations.

Then, pairs of sentences are passed in and the model must predict which sentence follows
the other(done with the [CLS] token which is mapped to NSP), called the entailment
prediction. The goal of this is for BERT to learn sentence level representations of the
data.

§4.1.1 The GLUE Benchmark

It is comprised of several different language tasks.

BERT does very well in these tasks upon Fine-Tuning. After we use the pre-trained
BERT model, we can fine tune in whatever way is dictated by the task to solve that
particular task. Since BERT architecture relies on tokenized inputs, all the different
tasks can be solved using the fine-tuned BERT model.
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§4.2 Encoder: Vision Transformer

The input image is divided up into 16× 16 patches and are treated as a sequence and
pass it into a transformer to see what it could do.

• During training, the image is split into patches and projected down with a learned
network(the first feed forward layer).

• A ConvNet instead of a Linear Projection for the first layer also works well.

• These are combined with the positional encodings and fed to the encoder(these are
usually learned for Vision Transformers)

• Then, a net on the first special position token is passed through a fully connected
network which outputs logits, and we use cross-entropy loss and backpropagate the
whole thing so that we can perform image classification.
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Remark 4.1. Why do we need positional encodings? Even though we want to mainly focus
on local information, as we stack them deeper and deeper we are able to see non-local
information, since the receptive field grows to the point where we can see things that are
far apart. We wouldn’t be able to understand the ordering of the patches if we didn’t have
positional embeddings.

§4.3 Swin Transformer

Swin stands for Shifted Window. The original vision transformer considered 16 × 16
patches of the image and did self-attention on each of the 16× 16 patches of the image.
But 16× 16 is a fairly low resolution and we sometimes want more fine grained patches
for certain tasks. Note that the sequence-length is quadratic in the size of the patch, so if
we divide 16× 16 into 8× 8, we halfed the height and width but quadrupled the number
of patches.

Swin does smaller patches, but to fix the quadratic issue, they perform self-attention
over a local region of the image that we have. But this might not be able to address
global dependencies. This is handled through the shifted window:

In the next layer, we shift over the window so that we can aggregate information over
the whole image by stacking layers on top of each other.

§4.4 Unsupervised ViT

The main idea behind this is distillation, where you have two ViTs and they both
have no supervision, but if you get clever and train one to match the other(with certain
inductive biases), you can get good an unsupervised training of a model that can be used
later.

§4.4.1 Masked Autoencoders

This is the similar to what BERT is doing. We have an input image and we mask some
amount of the image(usually around 75% of the image). Using the unmasked patches,
we pass them through a transformer encoder, map it back to the patches that weren’t
masked and mask tokens, and pass this to a decoder(not actually a transformer decoder).
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§5 03/14/2022 - Sequence-to-Sequence Models

We are converting input sequences into output sequences. The canonical example is
machine translation, where we translate sentence A into sentence B. This is the main
example that we focus on today.

§5.1 Seq2seq Models

We already discused several models for handling sequential data(RNNs, LSTMs, Trans-
formers). We also discussed cases where the input is not a sequence but the output is.
Now, we fill in the blanks for sequence input and sequence output tasks.

• Generally, we read in the entire input sequence before trying to generate the output
sequence. This is not always necessary, for example, we could have transformer-type
architectures that translate sequences into new sequences with masking.

• We focus on many-to-many where we read in the entire input first.

This is the canonical way of solving this problem and all seq2seq models follow the
encoder-decoder architecture.

• The encoder reads in the input sequence and encodes it into a representation.

• The decoder conditions on this representation in order to decode the output.

• Historically, both of these were LSTMs with separate parameters.

• Nowadays, they are both usually transformers.

§5.1.1 RNN(LSTM) seq2seq, basic

We have a sentence ”un chiot mignon”. We feed a token for each word and move to each
word in the sentence. Then, we pass it into a new decoder RNN by first giving it a ¡start¿
token and conditioned on the representation, we output probabilities of what the first
word might be. Then, we pass this back into the decoder to keep generating words in an
auto-regressive fashion. We keep going until we see an ¡end¿ token.

§5.1.2 Multilayer RNNs

A simple modification is to add more layers. All of our layers pass into hidden states
which correspond to better and better representations.
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What are some issues with the above models?

• We have the bottleneck problem. All information about the source sequence has
to pass through a direct connection between the encoder and decoder, so the
connection between the encoder and decoder is very crucial.

• This makes it difficult - for example, if the last word we want to decode corresponds
to the first word. The issue is that we saw a token whose information flow has to
survive through all the different hidden states.

§5.1.3 Attention

Now, we use attention to connect the encoder and decoder is a more direct way without
relying on a single connection. We make keys from each hidden state, and we treat the
hidden states as values directly. Then, we generate queries from the hidden states of the
decoder and comparing these with the keys and values with a dot product giving us a
similarity score. Then, taking a softmax and taking a weighted sum, with all the values
with the weights computed using the dot products, we obtain the representation that we
use to generate the output at the particular timestep.

• With attention, the direct connection between encoder and decoder becomes less
important.

• We can make the encoder a bidirectional RNN and attend over the outputs.
Attention allows the decoder to look at all the hidden states representations that
the encoder is producing. So we might get a better understanding of what a token
means at a timestep by looking at the past and the future(one LSTM running
forwards and backwards and concatenating representations). The decoder still
needs to be unidirectional since we generate in an auto-regressive manner.
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• The value function is the identity function in this case. This is slightly different
from before, where we learned the value function. We also could have used a learned
value function.

• We could also make the key and query identity functions. In that case, we are
comparing the hidden states directly and based on those similarities, we generate
the element to be used for the next timestep.

§5.2 Seq2Seq Transformers

Given an input sequence X, we learn a representation Z from the transformer encoder.
Then, we have a separate decoder learning the output sequence which generates a sequence
in an auto-regressive manner.

§5.2.1 Cross Attention Layers

In the cross attention layer, we use the key and value from the transformer encoder and
the queries from the decoder,masked self-attention.

§5.3 Recent seq2seq: T5

• The text-to-text transfer transformer(T5) solves many different NLP tasks in a
unified text input, text output framework.

• We pass in an input sequence prepended with the actual task and these are uniformly
handled and solved using T5.

• This is trained on C4 and achieves a number of competitive and state-of-the-art
results.
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§6 03/16/2022 - John DeNero: Neural Machine Translation

• Text as input and text as output

• Input and output have roughly the same information content

• The output space is very large, but the output is more predictable than a language
modeling task.

One issue is that there is variety in Human-Generated Translations. This could be
because of grammatical errors, different orderings of words, etc. So we have issues even
with the labels of our dataset.

§6.1 Conditional Sequence Generation

We estimate P (e|f) from a sequence model P (f, e). To do this, we run an RNN over the
whole sentence, which first computes P (f), then computes P (e, f).

We can do better by using an encoder-decoder model: different parameters or architectures
for encoding f and predicting e.

§6.2 Search Strategies

• For each target position, each word is scored(alternatively, you could use a restricted
list, but the quality degrades), and you choose the highest score.

• Greedy decoding: extend a single hypothesis with the next word that has the
highest probability. This will tend to have repetitions because it is not uncommon
for a word to appear more than once causing a loop.

• We want sequences with the highest probability, not just words. To do this, we use
Beam Search: Fixed number of partial translations(usually two), then prune.
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In actually implementing Beam Search for Batch Decoding, we have the following:

• We do something to make sure we don’t pick the same word for both branches.

• Then, we consider the scores for the top vocabulary options and choose the top
two.

Generally, NMT models prefer translations that are two short.

s(e) =

m∑
i=1

logP (ei|e1:i, f).

• The model is made up of a product of things less than 1, so the longer the sequence,
the smaller it tends to be.

• Another explanation has to do with how they are trained, we don’t just maximize
the probability of unseen data, but we hold out the probability mass with unseen
things like dropout, etc. It forces the probability terms to be smaller than they
should be, and multiplying things that are shorter than they should be results in
smaller sentences.

• ”For more than 50% of sentences, the model in fact assigns its global best score to
the empty translation” (Stahlberg and Byrne, 2019)

To deal with these issues, we use alternative scorings on the beam:

§6.3 Training Loss

We do something called teacher forcing: during training, only use the predictions of
the model for the loss, not for the input.

One hack is label smoothing: update toward in a distribution in which 0.9 is assigned
to an observed word and 0.1 probability is decided uniformly among the other words.
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§6.4 Subwords

The sequence of symbols that are embedded should be common enough that an embedding
can be estimated robustly for each, and all symbols have been observed during training:

• Solution 1: Symbols are words with rare words replaced by UNK.

– Replacing UNK in the output is a new problem(like alignment).

– UNK in the input loses all information that might have been relevant from
the rare input word(tense, length, POS)

• Solution 2: Symbols are subwords

– Byte-Pair encoding: splits a word into subwords

– Other techniques that find common subwords aren’t reliably much better.

– Training on many sampled subword decompositions can improve out-of-domain
translations.

– If there is only one way of splitting up a word, we might miss other ways of
splitting a word that is better for translation.

§6.4.1 Byte-Pair Encoding

You start by splitting each word into characters. Then you find the most frequent pairs
of characters and turn that into a new character. Repeat.

§6.5 Back Translations

One trick is to synthesize an en-de parallel corpus by using a de-en system to translation
monolingual de sentences. This can help if the de sentences are already in a en-de parallel
corpus!
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§7 03/28/2022 - Distribution Shift

Today, we will be talking about distribution shift: when the test data comes from a
different distribution than the training data. The real world is full of distribution shift -
the world changes all the time and it is common that the training data becomes outdated
or is not representative of the full picture. Usually, it is benign, but it can be harmful
sometimes.

This can cause accuracy to go down, but it can cause other degradations:

• worse calibration

• worse fairness: worse for particular users

Most of these examples come from computer vision(image classification in particular).

§7.1 Risk

Recall, we defined risk R(θ) = E[`(θ;X,Y )]. We also defined empiral risk R̂(θ) =
1
N

∑N
i=1 `(θ;xi, yi), a monte carlo estimate of the true risk.

• Supervised learning is refered to as empirical risk minimization(ERM).

• Why and when does it make sense to use this as an objective?

§7.1.1 The ERM Assumption

ERM is based on the assumption that the test data distribution is the same as the
training data distribution. Under this assumption(and good validation, regularization),
we can derive generalization bounds of how well we expect models to generalize to new
data, and even for deep neural networks!

This assumption is used by almost all supervised learning methods, and it is referred
to as ”the big lie of machine learning” by Prof. Zoubin Ghahramani. This is because it
is very rarely the case that training and test data match perfectly. There are many cases
where it ”almost” holds, but there are scenerios that do not generalize at all.

§7.2 Distribution Shift in the Real World

Distribution shift in the real world is the norm, not the exception. But we need to
consider whether or not it will be a problem in our application.

• If it is in a continuous deployment setting, the model will likely encounter future
scenarios not represented in training data.

• If the model interacts with end users, some users will be atypical and challenge the
model in strange ways.
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§7.3 Distribution Shift Benchmarks

We have multiple objectives:

• Benchmarks that are diverse and representitive or real applications. If we had
synthetic benchmarks then we run into the issue where we design methods that
overfit to the synthetic benchmarks but don’t perform well in the real world.

• Benchmarks that are easy to use and evaluate on.

§7.3.1 ImageNet Challenge Test Sets

This is a popular way to test model robustness to different distribution shifts. The
test sets are designed to stress test models by simulating extreme or highly unusual
events(that are still plausible).

They contain the same classes as ImageNet so any model trained on ImageNet can be
evaluated on these test sets.

§7.3.2 WILDS Benchmark

• Having easy to use and standardized challenge test sets are important but they
might not be the full picture.

• We are limiting ourselves to just image net, which does not cover the entire space.

WILDS aims to curate a suite of problems that faithfully represent how distribution shift
manifests itself in real world applications.
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§7.4 NLP: ANLI Dataset

• Natural language inference is the task of determining if a premise sentence and
hypothesis sentence are related through contradiction, neutrality, or entailment.
This is part of the GLUE benchmark.

• The adversarial natural language inference (ANLI) dataset consists of crowd-
sourced hypothesis written to fool state-of-the-art pre-trained models.

• To construct the dataset, an annotator is asked to write a hypotehsis given a
premise and a condition.

– If the model corrects predicts the condition, the annotator tries again.

– If incorrect, hypothesis is verified by other annotators.

§7.5 Robustification

How do we make models more robust? For WILDS, the training dataset comes with
more info that we can leverage. But for image set, we don’t get additional information
for training. Some general techniques that have proven useful are:

• Train larger models on larger, more diverse datasets

• Using heavy data augmentation and alternate/additional training objectives.

§7.5.1 Train on Larger Datasets

Does this improve ”robustness”? Now, the test dataset is less out of distribution(OOD),
so is the model more robust or have we just captured a training sample that better covers
the test data.

§7.5.2 Data Augmentations

Some techniques are:

• Mixup: produce element-wise convex combinations of datapoints and improve
corruption robustness.

• AutoAugment: learns complex augmentation strategies from basic ones by training
tens of thousands of deep neural networks. This is a very expensive strategy but
not a bad strategy.
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• AugMix: mixes together random augmentations using ones from AutoAugment

• PixMix: Mixes in images from a dataset(such as fractals) and mixes it together
resulting in consistently good performance across several metrics.

§7.5.3 Masked Autoencoders

The current state of the art numbers are trained with ViT models with a pretrained
masked autoencoding objective.

Then, we find tune the encoder on ImageNet. Supervised learning on the original
ImageNet training set after this pretraining leads to the best results amongst models
that do not get additional data.

§7.6 Anomaly Detection

• If the system can detect an anomaly, then it might be able to enter some conservative
mode or a fail-safe to avoid catastrophic errors.

• Detect malicious use of ML systems(hackers)

• Detect potential dangers, like dangerous novel microorganisms.

§7.6.1 Implementation

• Assign an anomaly score to every input x. We only do this for inputs because we
want to be able to do this at test time as well. Higher scores are more anomalous.

• What if we learned a model of p(x)( a generative model) and treat x as anomalous
if it has low p(x)?

– This does not currently work well since learning models of p(x) is very difficult.

– It is also not sure if models using p(x) or log p(x) is actually that well-framed
of an idea to detect anomalies.

– Modern deep generative models still do poorly at anomaly detection using the
scheme for complex input spaces.
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§7.6.2 A Simple Baseline

• Doesn’t involve training a generative model

• Use the model’s confidence maxk pθ(y = k|x) to detect anomalies.

• Specifically, we use the score −maxk pθ(y = k|x). We may also use −maxk zk, the
negative of the max logit for some situations.

• The simple baselines work well across CV, NLP, speech recognition, classifications,
but it cannot detect adversarial examples.

• Some more examples include likelihood ratios, outlier exposure, virtual logit match-
ing.

§7.6.3 Benchmarks for Anomaly Detection

• There is a much larger search space for constructing anomaly detection benchmarks
- we train a model on one dataset and treat any other data as anomalous.

• Example: train on CIFAR-10, evaluate on SVHN

• Example: train on CIFAR-10, evaluate on CIFAR-100

• Example: train on ImageNet-22k, evaluate on Species

§7.6.4 Evaluting Binary Classifiers

• We can think of anomaly detection as binary classification, since we have anomalous
or not.

• What might be the issue of just considering accuracy? Class imbalance: What if
we have 1 anomaly, 99 normal. The model that always predicts normal has 99%
accuracy, but is not a good detector.

• So we need more detailed metrics, true positive, false positives, true negatives, false
negatives.
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§8 04/04/2022 - Adversarial Examples

§8.1 Test time Adaptation

• We talked about heuristic techniques like scaling up datasets and using data
augmentation techniques. But this all happens at training time.

• Are there training time techniques to adapt to shift at test time using available
information? Assume we have access to and can change the model’s parameters, or
we have other means of augmenting the predictions.

• We can assume we have multiple test points, from which we can estimate statistics
of the underlying test distribution, and adapt to that distribution.

• if there is a label shift(p(x|y) is the same but p(y) changes), we can change the
threshold for predicting various classes according to how the label should change.
We can estimate this using the confusion matrix.

§8.1.1 Methods for Test-time Adaptation

• Batch Norm adaptation: leave the batch norm layers in training mode at test time.
This way we recompute statistics that we use for normalization at the test time.

• Self-supervised learning: have a loss function that only depends on inputs and
construct fake labels based on auxiliary tasks that we define. For example: rotation
prediction, entropy minimization.

If we have a standard model g : X → Y, we can think of the adapted model as
f : X × Px → Y, where Px is a distribution that the input comes from. In practice, we
can estimate Px with (x1, . . . , xk).

§8.2 Adversarial Robustness

We have an adversarial distortion that is carefully crafted to be imperceivable to the
human eye but cause the model to predict a different layer. These are models that have
not been trained to handle adversarial examples.

Now, we can mostly train against imperceptible distortions.
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§8.2.1 Modern Adversarial Distortions

In the modern examples, we have changes that are perceivable to the human eye, but the
underlying class in unchanged. This is not good either because we don’t see a difference in
the class but a large degradation in the image, but it will fool robustly trained classifiers.

Modern networks can be make robust to imperceptible distortions, but they are not
robust to perceptible distortions.

§8.2.2 Fooling Binary Logistic Regression

Suppose we have the model

fθ(x) =
exp θTx

1 + exp θTx
.

If we say that we can change the inputs to x + ε with ‖ε‖∞ ≤ 0.5, we can completely
change the prediction of the model:

• The comulative effect of many small changes made the adversary powerful enough
to change the classification decision.

• Adversarial examples exist for non deep learning models.

§8.3 Adversary Threat Models

It hopes to make assumptions about what the adversary looks like and what they are
capable of.

• A simple model is to assume the adversary has an `p attack distortion budget ε:
for some p, ε, ‖xadv − x‖p ≤ ε.

• Not all distortions have small `p norm, for example rotations. But this is usually
tractable to study.

• The goal is to find a distortion δ to maximize the loss subject to the budget

xadv = x+ argmax
δ:‖δ‖p≤ε

`(θ;x+ δ, y).
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§8.3.1 Fast Gradient Sign Method(FGSM)

One simple attack:
xFGSM = x+ ε sign(∇x`(θ;x, y)).

In this case, ‖xFGSM − x‖∞ = ε. If the gradient is accurate, the moving in the positive
direction increases the loss and vice versa, so we go in the final direction that maximizes
the overall loss.

The attack is called fast because it only uses a single gradient ascent step. Nowadays,
this is easy to defend against.

§8.3.2 Projected Gradient Ascent(PGD)

PGD uses multiple gradient ascent steps so is more powerful than FGSM. How it works
with T steps and `∞ budget ε

1. Randomly initialize a perturbed image x̃ = x+ n where ni ∼ U [−ε, ε] and initialize
δ = 0.

2. for t = 1, . . . , T , set δ = clip(δ + α sign(∇δ`(θ; x̃+ δ, y)),−ε, ε).

3. Set xPGD = x̃+ δ.

§8.4 Adversarial Training

A common procedure is as follows:

1. Sample a minibatch (x(1), y(1)), . . . , (x(B), y(B)).

2. Create x
(i)
adv from x(i) for all i.

3. Optimize the average training loss on these adversarial training examples.

The downside of this is that AT can reduce accuracy on nonadversarial examples by 10%.

§8.4.1 Untargeted vs. Targeted Attacks

So far, we have assumed untargeted attacks which try to maximize the loss. By contrast,
a targeted attack optimizes examples to be misclassified as a predetermined target ỹ.
Targeted attack evalution is standard for ImageNet because there are many similar
classes:
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§8.4.2 Transferability of attacks

The adversarial arms race

An example crafted for one model can potentially be used to attack different models.
For example, given M1,M2 neural network models, xadv designed for M1 can sometimes
result in a high loss for M2(xadv) even if M2 is a different architecture.

The transfer rates can vary greatly, but even moderate amounts of transferability
demonstrate that adversarial failure modes are somewhat shared across models. Con-
sequently, an attacker does not need access to a model’s parameters or architectural
information to try to attack it.

§8.4.3 Using Larger and More Diverse Data

• Adversarial robustness scales slowly with dataset size

• Adversarial pretraining on a larger training set has been shown to help: to increase
CIFAR-100 robustness, adversarially pretrain on ImageNet.

§8.4.4 Data Augmentation

One particularly effective technique, combined with adversarial training with a parameter
exponential moving average is CutMix.

§8.4.5 Choice of Activation Functions

Sharp activations such as ReLUs make AT less effective since gradients are less condi-
tioned, so by improving gradient quality for the attacker and network optimizer, smooth
activiations like GELUs improve adversarial training.

§8.5 Unforeseen Adversaries

Models are far less robust to attacks they are not trained against. To estimate robustness
to unforeseen attacks,we should measure robustness to multiple attacks not encountered
during training
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§9 04/06/2022 - Generative Models

Some examples we have seen before are GPT-3 and Masked Autoencoders.

§9.1 Density/Distribution Modeling

Some potential motivations:

• Generation: Synthesize new data analysis that are useful/interesting/pretty.

– Conditional Generation: Synthesize specific data points of interest

• Density modeling: understand/analyze the likelihood of various data points.

– This doesn’t work that well OOD yet.

• Representation learning(compression or dimensionality reduction): convert high
dimensional data into lower dimensional representations.

§9.2 Generating New Data

• In NLP, autoregressive models like GPT reign when it comes to generation.

• Masked autoencoders are capable of generating images, but that is not what
they are designed for. For CV, the leading approaches are generative adversarial
networks(GANS) and diffusion/score-based models.

• For audio, the leading approach is autoregressive modeling.

§9.3 Generative Adversarial Networks

• We have two networks: a generator G that is synthesizing data from noisy inputs
and a discriminator D which distinguishes real data from synthesized data.

• We make these compete against each other leading to the following objective:

min
G

max
D

Ex∼pdata [logD(x)] + Ez∼p(z)[log(1−D(G(x)))].

• The above objective is akin to the Binary Cross Entropy loss on all the data points
where the real data points have label 1 and the synthetic ones are 0.

• If the generator wins, the generator will be generating images that are indistin-
guishable from real images. If the discriminator is too good, the generator might
not be able to do anything to win.

• There is some theory: optimal G∗ under Bayes optimal D∗ recreates the data
distribution.

• After training: throw away D, use G to generate new samples.

We have had many works contributing to GANs with newer tricks and scaling.
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§9.3.1 Conditional Generation with GANs

There are many ways to condition the generator to guide the data it produces.

• If we have class information, we can pass the label to both G and D.

• Without class information, we can include a piece of the input that is ”label-
like”(uniform categorical) to do unsupervised discovery of different categories.
Here, additonal objectives, such as maximizes the mutual information between the
generator output and ”label-like” input(InfoGAN)

We could also condition on other things, like another image.

§9.3.2 Unsupervised Image-to-Image Translation

Translate images from one domain to another domain. For example pictures of horses to
zebras!

• CycleGAN, trains two image-to-image generators that turn images from one domain
into images of the other domain(and correspondingly two discriminators). There is
also cycle consistency in that if I generate a horse and use that to generate a zebra
and back to the horse, I should get the same image.

§9.3.3 Summary

• GANs the go-to model for image generation. Other models are catching up in terms
of quality but are much slower.

• GANs are not density models, so we can’t get probabilty estimates of points from
a GAN.

• This makes them difficult to evaluate, how do we determine whether a GAN is
better than another GAN or a different model? Usually we have metrics based on
inputting generated images into a pretrained classifier(Inception and FID scores).
However, this is ad-hoc and doesn’t have a theoretical foundation.

§9.4 Density Models on Images

Learning an approximation of pθ(x) is difficult and may sometimes be useful(but not
always) for detecting anomalous x’s. This model precribes a clear approach for both
training(MLE) and evaluation(better held out likelihood means better model).

There are three main classes of DGMs that allow for estimating pθ(x): autoregressive,
latent variable, and flow-based models.

§9.5 Autoregressive Models

Conceptually, we factorize the density according to the chain rule:

pθ(x) =
d∏
i=1

pθ(xi|x1, . . . , xi−1).

• x may be sequential, or we can define an ordering.

• How do we define the model so that we get pθ(xi|x<i). In the transformer decoder,
we used masking to ensure that we don’t see future x≥i.
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• We can do this similarly for images, masked convolutions(only pay attention to
pixels that have come before, PixelCNN), masked self-attention(Image Transformer,
Sparse Transformer).

§9.5.1 Distribution over Pixels

What distribution is pθ(xi|x<i) for image pixels and how do we parameterize it?

• One option is to make it a 256-dim Categorical (softmax) distribution. But this is
expensive, and doesn’t capture inductive biases(nearby values are closer than far
away values).

• One effective approach is to use a mixture of (truncated) logistic distributions

• Other approaches also sometimes work, treating pixels as continuous values in [0,
1], Beta, Kumaraswamy, Logit-Normal distributions.

§9.5.2 Summary

• Offer the ”best in class” modeling performance in terms of generation and likelihood
metrics.

• This is true beyond images - there are very good autoregressive models for language
and audio

• Similar to GANs, we can also do conditional generation on label information.

• GANs are superior though when it comes to image generation and they are very
slow comparatively.

• They don’t provide a notion of a latent space, so they aren’t used for representation
learning.

§9.6 Representation Learning

• The model should have a latent representation z that is lower dimensional. GANs
had this.

• Ideally the model would have an encoder that maps x→ z.

• We might want to model z as probabilistic for some applications.

§9.6.1 Latent Variable Models

• Model p(z) which is the prior(something simple, unit Gaussian) and pθ(x|z) which
is the observation model(producing images given a z, generator, generative model,
decoder)

• The likelihood of a data point is given by

pθ(x) =

∫
pθ(x|z)p(z) dz.

This is intractable unless x, z are very simple.

• We are interested in pθ(z|x), which is also intractable.

• Idea: what if we model pθ(z|x) with another distribution qφ(z;x)?
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§9.6.2 Evidence Lower Bound(ELBO)

DKL(qφ‖pθ) = Eqφ [log qφ(z;x)− log pθ(z|x)]

= Eqφ [log qφ(z;x)− log pθ(z, x)] + log pθ(x)

= Eqφ [log qφ(z;x)− log pθ(x|z)− log p(z)] + log pθ(x)

= −(Eqφ [log pθ(x|z)]−DKL(qφ‖pz)) + log pθ(x)

≥ 0.

The term (Eqφ [log pθ(x|z)]−DKL(qφ‖pz)) is called the evidence lower bound.

§9.6.3 Variational Autoencoders(VAEs)

• In VAEs, both the observation model pθ(x|z) and recognition mode(or encoder)
qφ(z;x) are trainined to maximize the evidence lower bound. This is an example of
variational inference.

• Intuitively, ELBO contains the reconstruction term and regularization term.

• After training, we may keep both models based on what we want. qφ gives us a
natural approach for generating representations of new data points, but pθ combined
with the prior allows us to synthesize new data points.

§9.6.4 Summary

• VAEs give a natural mechanism for representation learning and generating.

• Though estimating pθ(x) is difficult, a lower bound can be easily obtained.

• We have a tradeoff between representation learning and generation quality.

• The VAEs which synthesize the best data points and result in the best likelihoods
utilize complex priors and modeling choices(quantization and multiple levels of
latent variables), making extracting useful representations difficult.

§9.7 Generating Images from Language

• OpenAI DALL.E 2 creates realistic images and art from a description in English.

It uses a Diffusion Model:

• A probabilistic model which defines a stochastic process where x is transformed
via an additive Gaussion noise, into z which is just pure noise.

• In particular, we learn the reverse process z → x and the forward process x→ z is
fixed as incrementally adding small amounts of noise.

• Similar to VAEs, we train by maximizing the evidence lower bound.

• These generate impressive samples, but sampling is expensive.
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§10 04/11/2022 - Self-Supervised Learning

Self-supervised Learning: Creating labels from unlabeled data. We hide some infor-
mation from the model and ask it to predict this.

We can think of generative modeling as some form of self-supervised learning, but they
are not the same in general.

Both of these have shown to be useful in representation learning in a number of
domains.

§10.0.1 Why Self-Supervised

• Good supervision is not cheap, and we already have vast amounts of unlabeled
data on the internet for a number of different modalities.

• These data may be able to teach models about the structure of the domain.

• Predict parts of the data given other parts

• Or, we may have additional domain knowledge we can pass on to the model via
training/data augmentation.

§10.0.2 Examples

Before, we have seen examples such as

• Masked Autoencoder

• BERT

• Auto-regressive modeling(kind of) since we predict the future given the past.

§10.0.3 Masked Autoencoding(MAE)

• Randomly masking out parts of the input(15% of tokens or 75% of image patches)
and predicting these parts is an effective self-supervised approach.

• MAE vision transformers and BERT and both transformer encoders that turn
masked inputs into representations that are useful for downstream tasks.

• During training, they are trained with simple decoder(token classifiers and a small
transformer for MAE).

• These decoders attempt to recover the original input that was masked out and the
encoder is thus trained to produce useful contextual representations.

§10.1 Self-supervised Learning in Vision

• For a long time, MAE was not performant or scalable approach to self-supervised
learning in CV. We didn’t have large enough datasets or compute power.

• As a result, we have a lot of other techniques.

• These leverage the known structure of images, constrastive learning and data
augmentation.
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§10.1.1 Leveraging Spatial Context(2015)

• Self-supervised task: Extract two patches from the image, and predict the relative
position of the second patch with respect to the first.

• Proved to be useful in pre-training ConvNets for downstream object detection tasks,
likely because the network learns about objects and their parts.

§10.1.2 Predicting Rotations(2018)

§10.2 Contrastive Learning

• Contrastive Learning: learned representations hsould be close together for similar
inputs and far apart for dissimilar inputs.

• If we have representation z generated from some input z with representations
z1, . . . , zk from other inputs.

– If one of z1, . . . , zk is generated from a similar input z+, we have the most
common contrastive learning loss

− log
exp(zT z+/τ)∑K
i=1 exp(zT zi/τ)

.

§10.2.1 Contrastive Predictive Coding(CPC)(2018)

• CPC defines similar as coming from the same input, which requires splitting up
the input into multiple parts, and dissimilar as coming from different inputs.

• This has been applied to audio, images, text.

• Extracting a single representation from the whole input requires more work.
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§10.3 Data Augmentation

• Many other types of data augmentations, besides rotations, can be leveraged to
produce useful self-supervised learning signals in CV.

• However, instead of trying to predict the augmentation, we can use the augmenta-
tions in conjunction with contrastive learning.

• Specifically, we consider different augmentations of the same image as similar and
different images as dissimilar.

• Now we can learn representations of entire images directly, since we don’t need to
split up the image direction.

§10.3.1 Momentum Contrast(MoCo)(2019)

• A key challenge in constrastive learning is sampling a sufficiently large and diverse
set of dissimilar examples for training

• If it is too large, then generating representations for all negatives will be expensive.

• MoCo maintains a queue of negatives and adds it to every training iterations with
the representations from the latest minibatch, pushing out the oldest minipatch.

• The small problem is that the representations at the end of the queue are not from
the same model anymore.

• Since the representation itself is changing, MoCo uses an exponential moving
average(EMA) of the model parameters to generate representations for the queue,
encouraging some similarity across mini batches.

§10.3.2 SimCLR

• We can remove the need for a queue if we incorporate larger batch sizes, longer
training, larger models, stronger augmentations, and a few technical improvements.

• These are summarized by SimCLR.
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§10.4 Bootstrap your own latent(BYOL)(2020)

• Contrastive learning is popular, but there are other approaches.

• One idea is to train two networks(the online and target or student and teacher).

• in BYOL, the online and target are given two augmentations of the same input,
and the online is optimized to try to predict the target’s network representation.

• The target network is updated as an EMA of the online network.

§10.5 Self-distillation with no labels (DINO)(2021)

• Have the student try to match the probability values of the teacher.

• They both get inputs and the teacher products some probability values and the
student is trying to match these values.

• The idea is called distillation in the case where the teacher knows something; it
has been pretrained on some dataset.

• Self-distillation is the self-supervised version of this, where it works well even when
the teacher knows nothing.

• The student is optimized to try to match the probability values and the teacher is
updated with an EMA on the student parameters.

§10.6 Multimodal Constrastive Learning: CLIP(2021)

• We are increasingly seeing powerful multimodel models which combine information
across modalities.

• Contrastive language-image pretraining(CLIP) is one model trained on a large
dataset of (image, text) pairs collected from the internet. This is unlabeled data

• The CLIP model has a text encoder and an image encoder where we output
representations which we embed into the same embedding space with the same
dimension so we can compare them directtly. Then, we train with a contrastive
objective where the (image, text) pairs are similar and all other non-pairs are
dissimilar.

• This is an important piece of the DALL.E 2 system.
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§11 04/13/2022 - Massive Models

We have models with over 100B parameters, and all of them are transformer decoder
language models. A natural question is to consider the scaling laws theoretically.

§11.1 Scaling Laws

§11.1.1 Scaling Laws for NLMs(2020)

Some weird things from these plots on the right:

• The scaling laws hold for over six orders of magnitude for the amount of available
compute and model size.

• Model size and dataset size need to be scaled together, but not equally : 8x model
size requires only 5x dataset size. This is disputed today by other work saying that
equal scaling is best.

• Larger models require fewer data points and optimization steps to reach the same
performance as smaller models.

• For a fixed compute budget, the best performance comes from training large models
and stopping well short of convergence.

§11.1.2 Scaling Laws for autoregressive generative modeling(2020)
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§11.2 Massive Models

§11.2.1 GPT-3(2020)

175B parameters, combined training set has 500B tokens. The model never sees the
whole dataset(only 300B).

Some options we have are

• Zero shot: predict the answer only given a natural language description of the task
. No gradient updates are performed

• One-shot: in addition to the task description, the model sees a sinlge example of
the task. No gradient updates performed.

• Few shot: in addition to the task description, the model sees a few examples of the
task. No gradient updates performed.

GPT-3 is very good at Few-shot learning, but there is significant room for improvement.

§11.2.2 Gopher(2021)

• Gopher is a 280B parameter transformer decoder

• 2T tokens but only trained for 300B tokens.

• many different sizes of the model, architecture considered and huge dataset collected.

• applicable to a diverse set of NLP tasks.

§11.2.3 Chinchilla(2022)

• Chinchilla considers varying hyperparameters (primarily, learning rate schedule)
that Kaplan et al held fixed, which leads to different scaling conclusions

• They concluded that model and dataset size should scale equally

• Tested on MAssive Multitask Language Understand(MMLU) which consists of
exam questions from 57 academic subjects from elementary to professional level.

§11.2.4 Megatron-Turing NLG(2022)

• MT-NLG is a 530B parameter transformer decoder

• Training set is (a puny) 339B tokens, training is done with 270B tokens

§11.2.5 PaLM(2022)

• PaLM is a 540B parameter (yes, you guessed it) transformer decoder

• Training set: 780B tokens; training: one full epoch!
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§11.3 Applications of Massive Models

§11.3.1 Few-shot learning via Prompting

• Provide some examples of the task within the model input itself

• Prompt engineering is getting the model to perform the best by giving the best
prompt

• PaLM using chain-of-thought prompting which not only prompts the correct answer
but also the process at which the answer is reached.

• Self-consistency(sampling multiple answers and picking the most consistent answer).

§11.3.2 Medium-shot learning with fine tuning

• fine tuning refers to updating the model via gradient based optimization with a
small data set.

• This is usually not feasible with the large size of the models.

• GPT-3 now offers fine tuning as part of the API.

• When possible, fine tuning significantly outperforms prompting.

§11.3.3 Specializing to Code: Codex and AlphaCode

• Codex is a 12B parameter model and fine tunes on 159GB from GitHub. This
powers GitHub Copilot.

• AlphaCode scales up to competition level coding, comparable to the median
competitor.

• 41B model size and 517B dataset size, model architecture is encoder-decoder, fine
tuning on competition code, sampling/filtering many candidate solutions help in
scaling to this level.

§11.4 Limitations of Massive Models

§11.4.1 Challenge Tasks

• Stress tests like ANLI significant room for improvement and scaling up doesn’t
solve this problem.

• Hard tasks like solutions for high school math contests have low accuracy.

• These models are trained/fine tuned with more text/code/math than a human will
ever see, so it seems like something is missing.

§11.4.2 Potential Harms and Biases

• Papers come with a model card describing details, intended uses, and some analysis
about potential harms.

• GPT-3 was analyzed for gender, race, and religion biases, and this shed light on its
predispositions that seem in line with training.
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• Analysis on Gopher (and, to an extent, PaLM) demonstrates that large models,
when given a toxic prompt, are more likely to generate toxic continuations

•
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§12 04/18/2022 - Chelsea Finn: Meta Learning

• Adapting to new objects

• Adapting to new molecules

• Adapting from simulation to real

• Adapting to new regions of the world

§12.1 How does Meta-Learning Work?

• Given 1 example of 5 classes and some test sets, it would not be able to train on
its own.

• Assume that we have other image data, split it into mini train sets and test sets.

• Hope that after doing the meta-training, we can meta-test with new classes.

• Image classification can be replaced with regression, language generatioon, skill
learning, or really any ML problem.

§12.2 Mathematical Formulation of Meta Learning

In supervised learning, we have inputs x, outputs y = gφ(x) and a dataset {(x, y)i}.
In meta supervised learning, we have inputs Dtr = {(x, y)1:K} and xts, and the goal is

to predict the corresponding label output yts = fθ(Dtr, xts). Now, we have a dataset of
datasets {Di}, Di = {(x, y)j}.

We reduce meta-learning to designing and optimizing f , which we can do using the
dataset of datasets and end-to-end learning.

§12.3 Meta Learning Problem

Given data from T1, . . . , Tn, so a new task Ttest. We have a key assumption: meta-training
and meta-test task drawn i.i.d. from same task distribution.

T1, . . . , Tn ∼ p(T ), Tj ∼ p(J ).

The tasks can correspond to
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• Recognizing handwritten digits from new languages

• Giving feedback to students on different exams

• classifying species in different regions of the world

• a robot performing different tasks

In general, the more tasks, the better.

§12.3.1 Other Similar Problems

• Multi-Task Learning: solve multiple tasks T1, . . . , TT at once:

min
θ

T∑
i=1

Li(θ,Di).

• Transfer Learning: Solve target task Tb after solving source task Ta by transferring
knowledge from Ta.

• Meta-Learning: Given data from T1, . . . , Tn solve Ttest.

In Meta-Learning and Transfer Learning, we generally assume we don’t have access to
prior tasks, but in all of these settings the tasks all share some prior structure.

§12.3.2 Terminology

• Dtr
i : support set

• Dtest
i : query set

• k-shot learning: learning with k exmaples per class

• N -way classification: choosing between N different classes.
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§13 04/20/2022 - Sergey Levine: Deep Reinforcement
Learning
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